
Transformed-Based Myoelectric Decoding for
Continuous Control of Prosthetic Fingers

Wolf De Wulf
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science by Research

CDT in Biomedical AI

School of Informatics

University of Edinburgh

2023

Abstract
Hand prostheses are evolving to restore people with limb difference with intuitive, in-

dependent, continuous control of prosthetic fingers. These types of prostheses are typ-

ically controlled by machine learning algorithms that extract intent from electromyo-

graphic recordings of muscle activity. Prominent models are successful in extracting

simple individual movements from such recordings, but under-perform when decod-

ing multiple simultaneous and more delicate outputs, such as grasps. Neural and deep

learning models are potential candidates to improve on this. Their flexibility makes

them suitable for multi-output tasks and alleviates the need for handcrafted features.

In this dissertation, I evaluate a deep neural model recently popularised for the process-

ing of biomedical time series: the transformer. I compare a number of configurations,

representing various approaches to input processing, model training, and architecture.

The best-performing model outperforms previous work in a multi-output multi-class

prosthesis control paradigm. With a shared core for multiple outputs, each represent-

ing a finger, the transformer is able to consider dependencies between its outputs to

outperform models that consider them independent. Furthermore, I find that the model

can identify muscle groups and that it can transfer across recording sessions. The

offline nature of the analysis is a limitation of this research study. Nevertheless, the re-

sults suggest that transformer-like architectures can make the simultaneous extraction

of multiple degrees of freedom from electromyographic muscle recordings practical.

Future research on this topic is recommended.

i

Declaration
I declare that this document was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Wolf De Wulf)

ii

Acknowledgements
First and foremost, I want to thank my supervisors for this dissertation: Prof. Kia

Nazarpour and Dr. Chenfei Ma. Both of them provided me with perfectly timed guid-

ance and support throughout.

Furthermore, I would like to thank the CDT in Biomedical AI for providing re-

sources and support, as well as the environment in which I was allowed to work on

this project. Discussions with such an interdisciplinary group of colleagues boosted

my productivity in a way I have not experienced before. In particular, Aryo Pradipta

Gema deserves acknowledgement for always being available to answer my questions

regarding transformers.

Lastly, I need to thank my partner. Although her influence on my time working on

this project could be seen as more negative than positive, I prefer to see it as the latter.

She keeps me social and rested, she pulls me away from my work when needed. As a

researcher, I have come to appreciate this more than I ever expected I would.

This work was performed using resources provided by the Cambridge Service for Data

Driven Discovery (CSD3) operated by the University of Cambridge Research Com-

puting Service, provided by Dell EMC and Intel using Tier-2 funding from the En-

gineering and Physical Sciences Research Council (capital grant EP/T022159/1), and

DiRAC funding from the Science and Technology Facilities Council.

iii

Contents

1 Introduction 1
1.1 Objectives . 3

1.2 Structure . 3

2 Background 4
2.1 Electromyographic Prosthetic Control 4

2.1.1 Machine Learning Approaches 4

2.1.2 Digit Action Decoding . 5

2.2 Transformers for Biomedical Time Series 6

2.2.1 Input Processing . 7

2.2.2 Domain of Attention . 10

3 Methodology 12
3.1 Data . 12

3.1.1 Acquisition Protocol . 12

3.1.2 Processing . 13

3.1.3 Labels . 14

3.2 Model . 16

3.3 Training . 18

3.4 Hyperparameters . 19

3.5 Evaluation . 19

3.5.1 Metrics . 19

3.5.2 Baselines . 20

3.5.3 Comparison . 20

4 Results 21
4.1 Movement Decoding . 21

4.2 Digit Action Decoding . 22

iv

4.2.1 Input & Model Variations 24

4.2.2 Cross-Acquisition Training Data 25

4.2.3 Independent Output Models 27

5 Discussion 29
5.1 Transformers for Movement decoding 29

5.2 Transformers for Digit Action Decoding 30

5.2.1 Cross-Acquisition Transfer 31

5.2.2 Muscle Groups . 31

5.2.3 Correlated Samples . 34

5.2.4 Time & Space Complexity 36

6 Conclusion 37
6.1 Contribution . 38

6.2 Prospects & Future work . 39

Bibliography 41

A Transformers A-1
A.1 Positional Encoding . A-1

A.2 Attention . A-2

A.3 Layer Normalisation & Residual Connections A-3

A.4 Architecture . A-4

B Resources B-1

C Model Training C-1

D Hyperparameter Optimisation D-1

E Positional Encodings E-1

v

Chapter 1

Introduction

Limb difference can significantly decrease quality of life (Sinha et al., 2011). Patients

speak of depression, anxiety, physical discomfort, phantom pains, difficulties in em-

ployment and social activities, and restricted mobility (Gallagher et al., 2011). The

goal of a prosthesis is to restore to people with limb difference those aspects in which

quality of life is reduced. With recent advancements in robotics and machine learning,

modern prostheses have become advanced mechanical devices that come closer and

closer to realising this goal.

An ideal prosthesis allows for independent, intuitive, continuous control of a va-

riety of possible actions. The mechanical aspect of such a prosthesis is mostly in

place. Robotic hands that can perform fine-grained, continuous movements exist and

are constantly being improved (Piazza et al., 2019). In contrast, the control aspect is

falling behind because of difficulties faced in the decoding of intent. A controllable

prosthesis typically extracts user intent from electromyographic recordings of muscle

activity, recorded using electrodes on the surface of the skin (sEMG; Roche et al.,

2019). Traditional control algorithms look for simple patterns in such recordings, e.g.

activation or deactivation (Vujaklija et al., 2016). Machine learning methods are able

to extract more complex patterns from sEMG recordings, allowing for more intuitive

control (Simão et al., 2019). Although these machine learning control paradigms have

had their successes, finding their way into commercial adoption (Roche et al., 2019),

substantial room for improvement remains.

One particular lacking of current machine learning approaches to prosthetic control

is that they decode only a single gesture at a time and do so in a discrete manner.

Various paradigms have been proposed to improve on this, ranging from multi-output

classification to extract multiple gestures at once (Ortiz-Catalan et al., 2014), to using

1

Chapter 1. Introduction 2

regression to extract trajectories instead of gestures (Krasoulis et al., 2015). However,

due to under-performance, few of these have resulted in effective real-time prosthesis

control.

As decoding paradigms become more complex, the question arises whether the

decoding models should follow. Most machine learning approaches to sEMG decod-

ing are non-neural and are trained using handcrafted features, encoding the aspects

of sEMG thought to be relevant (Simão et al., 2019). Recently, studies have started

considering neural models and even deep learning architectures that can learn relevant

representations of sEMG signals by themselves (Xiong et al., 2021). The flexibility

of neural models makes them innately apt at multi-output tasks, whether classification

or regression. Furthermore, with the possibility of sharing weights, they can consider

dependencies between outputs in an intuitive way.

In this work, I investigate the effectiveness of a transformer-like model for extract-

ing intention from sEMG recordings. The success of the transformer architecture in the

field of natural language processing (Vaswani et al., 2017) has resulted in adaptations to

various other research areas (Lin et al., 2022), sEMG decoding included (Montazerin et

al., 2023; Rahimian et al., 2021; Zabihi et al., 2022). A comprehensive understanding

of how transformer architectures can be leveraged in this field is yet to be established.

A number of attempts have been proposed, each implementing a particular input for-

mat and certain architecture modifications. Here, I discuss the justifications for each

of these design choices and combine the most principled into a transformer-like model

that I evaluate in a modern multi-output sEMG decoding paradigm.

The results show significant increases in performance when compared to previous

work with traditional machine learning models (Krasoulis & Nazarpour, 2020). Fur-

thermore, they indicate that a transformer-like architecture can identify muscle groups

and can learn sEMG representations that effectively generalise over recording sessions

and to multiple outputs. A limitation of my work is that it consists of offline analyses,

and various aspects of real-time prosthetic control are not considered. Furthermore, I

only consider a single dataset, which comprises a limited number of participants and

finger movements and was recorded in an isolated environment. Machine learning

models are known to suffer from poor generalisation under different limb positions

and/or muscle contraction levels and should thus be evaluated in terms of robustness

to these factors (Fougner et al., 2011; Khushaba et al., 2016). Nevertheless, my find-

ings show that the transformer architecture has generalisation capabilities that warrant

further research addressing these limitations.

Chapter 1. Introduction 3

1.1 Objectives

My objectives in this dissertation are the following:

• O.1: Establishing a high-level overview of the effectiveness of transformer-like

architectures when employed for extracting intention from sEMG recordings.

– What input formats work best?

– How much data is needed to achieve reasonable performance?

– Is cross-acquisition transfer feasible?

– Which patterns does the model pick up on and can these be related to rele-

vant biophysical phenomena?

• O2: Verifying whether a neural model with a shared core for multiple outputs

can learn generalised representations of sEMG, comparing to models that unre-

alistically assume outputs to be independent.

1.2 Structure

I contextualise my work in Chapter 2, which consists of two parts. The first part briefly

discusses traditional and modern sEMG prosthetic control paradigms. The second part

summarises transformer models for biomedical time series.

Chapter 3 discusses methodology; data, processing, the transformer model and its

variations, as well as details regarding training and evaluation. In-depth mathematical

explanations of the modules of the transformer are provided in Appendix A.

Chapter 4 reports the results. I compare a multitude of baselines and variations of

the transformer-like architecture in a multi-class multi-output classification paradigm.

I then mix training data from two recording sessions separated by a ten minute break

to investigate if the transformer-like model can generalise despite the nonstationary

nature of sEMG.

In Chapter 5, I frame the capabilities of the transformer in both the movement de-

coding and digit action decoding paradigms. I further discuss cross-acquisition trans-

fer, certain spatial and temporal patterns the model can identify, and time and memory

complexity considerations.

In Chapter 6, I conclude the dissertation with a summary of my work. I also dis-

cuss future prospects and possible research routes for transformer-like architectures for

sEMG prosthetic control.

Chapter 2

Background

2.1 Electromyographic Prosthetic Control

Traditional clinical solutions for upper-limb prostheses such as prosthetic hands typ-

ically implement amplitude-based control algorithms (direct control; Ison & Artemi-

adis, 2014). These algorithms use the activity of pairs of antagonist muscles, recorded

with pairs of electrodes above the amputation. If sufficient activity is detected, a cer-

tain function, e.g. opening or closing the hand, is activated. To allow for more degrees

of freedom (DOF), the user can switch between functions via a certain trigger signal,

e.g. muscle co-contraction or physical buttons (Vujaklija et al., 2016). While such an

approach is robust, it limits control and can be cumbersome and non-intuitive to use,

eventually leading to prosthesis rejection (Salminger et al., 2022).

2.1.1 Machine Learning Approaches

Recent advancements in robotics and machine learning (ML) bring opportunities to

improve on traditional prosthetic control. If ML control algorithms can be designed

to capitalise on the mechanical capabilities of modern day prostheses, user satisfaction

is expected to improve drastically. A typical approach consists of using a classifica-

tion model to map recordings extracted from multiple sEMG channels onto a certain

function, e.g. a hand grasp. This simple but effective control paradigm has been highly

successful and has found its way towards commercial adoption (Roche et al., 2019).

Various models for extracting sEMG features and/or mapping them to functions

have been proposed. Our reasonable understanding of what sEMG signals represent

has led most approaches to be ML approaches, where features of the sEMG signals

4

Chapter 2. Background 5

... ...

Raw EMG Preprocessing

y1 = close
y2 = stall
y3 = open
y4 = open
y5 = open
y6 = open

y2

y3y4y5
y6

EMG Features Multi-Output
Classification

Digit
Actions

Prosthetic
Control

y1

Figure 2.1: Visualisation of the digit action decoding paradigm. Raw sEMG from

multiple sensors is processed and the resulting features are used to train a multi-output

multi-class classifier. Each output corresponds to one degree of freedom (here finger

movements) and can take on three possible values: open, close, or stall. Predictions

can be used to control hand prostheses. Figure after Krasoulis and Nazarpour (2020).

are designed by hand (Simão et al., 2019). Recently, however, deep learning (DL;

LeCun et al., 2015) approaches that are able to extract high-level abstract features

automatically, have become popular as well (Xiong et al., 2021).

2.1.2 Digit Action Decoding

Ultimately, the goal of prostheses is to allow for simultaneous, continuous, and intu-

itive control of multiple DOFs, restoring people with limb difference with as much

functionality as possible. Although pattern finding control algorithms proved a signifi-

cant improvement compared to direct control, they usually still only allow for a single

DOF to be controlled in a discrete manner. Various approaches have been proposed

to address this limitation. Multiple functions can be extracted simultaneously, in a

multi-output classification paradigm (Ortiz-Catalan et al., 2014; Wurth & Hargrove,

2014). Continuous control can theoretically be achieved via regression-based methods

to estimate wrist or finger kinematics (Hahne et al., 2018; Krasoulis et al., 2015). Nev-

ertheless, few of these studies have provided people with limb difference with real-time

control of prosthetic fingers (Cipriani et al., 2011; Krasoulis et al., 2019).

Krasoulis and Nazarpour (2020) propose digit action decoding to improve continu-

ous, independent control of prosthetic fingers. Figure 2.1 visualises the process. Unlike

full-resolution regression on a continuous sEMG recording, digit action decoding aims

to extract intent from multiple digit-related DOFs from short windows of the signal.

For each DOF, the windows are classified into three classes: open, close, or stall. Kra-

soulis and Nazarpour reason that replacing the continuous output variables with dis-

Chapter 2. Background 6

crete ones, and thus moving from multi-output regression to multi-output multi-class

classification, should simplify the decoding part of the pipeline.

In an initial study, Krasoulis and Nazarpour (2020) evaluate the digit action de-

coding paradigm in an offline analysis, where they show that it is feasible to extract

individual digit actions from sEMG signals. In a first set of evaluations, they unrealis-

tically consider the finger DOFs to be independent and train traditional ML models per

DOF. Subsequently, they attempt to leverage the dependencies between finger move-

ments by implementing multi-output classification using classifier chains (CC; Read

et al., 2011).

A CC model consists of a classifier for each DOF. Before a CC is trained, an order

over the DOFs is established. The first classifier in the chain is trained for the first

DOF on the input features only. Subsequently, the second classifier is trained for the

second output on the input features and the ground truth labels of the first DOF. This

process is repeated, each time including the ground truth labels of all the previous

DOFs. Inference with a CC model follows the same procedure, including predictions

at each step instead of ground truth labels. A popular variant of CCs ensembles a

collection of CCs trained with random orders over the DOFs.

Although CC models can take into account dependencies between DOFs, Krasoulis

and Nazarpour observe performance not statistically discernible from that of models

that consider the outputs to be independent. Presumably, neural models with a certain

proportion of shared parameters in early layers can improve on this. With appropri-

ate output layers, such models are innately able to model multiple dependent output

variables.

2.2 Transformers for Biomedical Time Series

The transformer is a DL architecture originally designed for sequence-to-sequence

tasks (Vaswani et al., 2017). By replacing recurrence with the attention mechanism,

the transformer addresses the long-range dependency problems Recurrent Neural Net-

works (RNN; Kolen & Kremer, 2001) and Long Short-Term Memory (LSTM; Hochre-

iter & Schmidhuber, 1997) models suffer from, thereby also allowing for more parallel

computation (Kaplan et al., 2020). In-depth explanations of the components that make

up the transformer architecture can be found in Appendix A.

Since their introduction, transformer-like architectures have been adapted to vari-

ous domains distinct from Natural Language Processing (NLP), for which they were

Chapter 2. Background 7

originally intended. Successful examples can be found in computer vision (Dosovit-

skiy et al., 2021) and protein structure prediction (Jumper et al., 2021). Recently,

several attempts have been made at training transformer-like architectures on time se-

ries (Wen et al., 2022). The ability to model long-range dependencies and interactions

in sequential data makes transformers appealing for time series modelling tasks such

as forecasting (Zhou et al., 2022), anomaly detection (Tuli et al., 2022), and classi-

fication (Zerveas et al., 2021). Advances for each of these tasks can have meaning

in a biomedical context. Transformer-like models have been proposed for predicting

seizures from electroencephalographic recordings (EEG; Hussein et al., 2022), detect-

ing arrhythmia from electrocardiographic recordings (ECG; Hu et al., 2022), and clas-

sifying sEMG recordings into hand movements to steer prostheses (Rahimian et al.,

2021; Zabihi et al., 2022).

Approaches of porting the transformer architecture to the processing of time series

range from using it as originally designed, to adapting various aspects of it to the task

at hand. Such adaptations can be low-level, i.e. on the module level, or high-level, i.e.

on the architecture level. The following few sections discuss considerations that can

be made when using a transformer-like architecture for the processing of biomedical

time series, focusing on the decoding of sEMG signals.

2.2.1 Input Processing

Since the transformer is a DL architecture, the preprocessing of time series inputs

should be kept minimal. The point of having a deeper model is that it can learn on its

own which features are most relevant to the task at hand (LeCun et al., 2015). However,

oscillatory and highly nonstationary signals such as EEG and sEMG are generally too

complex for any model to learn from directly. For such signals, the task becomes

simplifying them in such a way that models can learn from them, but not beyond that.

Relevant nuances in the signals should remain, in the hope that the DL architecture can

learn to use them.

2.2.1.1 Envelope

In the context of sEMG, a prevalent method for simplifying the signal is to calculate

its envelope. Firstly, we clean up the signal by getting rid of powerline noise using

a notch filter and unwanted frequencies using a band-pass filter (Chowdhury et al.,

2013). Then, to calculate the envelope, we rectify the signal and pass it through a low-

Chapter 2. Background 8

0.0005

0.0000

0.0005

m
V

raw

0.000025

0.000050

0.000075

0.000100

m
V

1Hz

0.00000

0.00005

0.00010

0.00015

m
V

3Hz

0 10 20 30 40 50
Time (s)

0.00000

0.00005

0.00010

0.00015

0.00020

m
V

10Hz

Figure 2.2: A segment of raw sEMG with its envelope at different cut-off frequencies.

The envelope is calculated by rectifying the signal (taking the absolute value) and then

passing it through a low-pass Butterworth (1930) filter. Choosing a cut-off frequency

of 1 Hz results in more smoothed signals. When the cut-off frequency is higher, for

example 3 Hz to 10 Hz, the signals retain more oscillatory nuances.

pass filter with an upper bound of 10 Hz or lower. Figure 2.2 depicts an example of

the before and after of this process. Other methods for calculating the envelope of a

signal exist, e.g. computing the root mean square for a window that slides across the

signal (Konrad, 2005). However, such methods tend to downsample the signal to a

single value per window, which is undesirable for models such as the transformer.

This way of processing sEMG signals was first tested for training convolutional

neural networks (CNN; Atzori et al., 2016), and afterwards adopted for the training

of transformer-like models (Rahimian et al., 2021). A consideration for calculating

sEMG envelopes using a low-pass filter is the cut-off frequency. If we keep higher

frequencies, more oscillatory nuances remain. Attempts at training transformer-like

architectures on sEMG signals in literature typically opt for a 1 Hz cut-off, simplifying

the envelope as much as possible (Rahimian et al., 2021; Zabihi et al., 2022).

Chapter 2. Background 9

2.2.1.2 Normalisation

When training ML models, it is common practice to normalise the input features, i.e.

mapping their values to [0,1], or transforming them such that they follow a distribution

with zero mean and unit variance. For sEMG envelopes, we typically compute the

minimum and maximum values of the training data to then map them to [0,1]:

x′(t) =
x(t)− xmin

xmax − xmin
(2.1)

We can use the same minimum and maximum values to normalise new sEMG record-

ings, aligning them with the data the model is trained on. Reducing the distribu-

tional shift between recordings is especially important for nonstationary signals such

as EMG.

Rahimian et al. (2020) observe that min-max normalisation does not take into ac-

count that a high percentage of useful information in the sEMG signals lie close to 0.

If we map sEMG envelopes to [0,1] in a linear manner, a lot of that information can be

0.0

0.2

0.4

0.6

0.8

1.0
Min-Max Normalised

0 10 20 30 40 50
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0
-law Encoded

Figure 2.3: The envelopes of 10 sensors recording sEMG signals. On top, when min-

max normalised. At the bottom, when µ-law encoded. The µ-law encoding amplifies

signals that lie close to zero in a logarithmic manner.

Chapter 2. Background 10

lost to a DL model. Therefore, they propose to use the µ-law encoding as a normalisa-

tion technique that normalises envelopes in a logarithmic manner. The µ-law encoding

is traditionally used in speech to reduce the range an audio signal spans (TU-T, 1988).

The transformation is as follows:

x′(t) = sign(x(t))
ln(1+µ|x(t)|)

ln(1+µ)
, (2.2)

where µ denotes the number of quantisation channels and is often chosen as 255. Fig-

ure 2.3 depicts 10 sEMG channels when min-max normalised and when normalised

using the µ-law encoding. Those sensors whose values are near zero in the min-max

normalised signals are amplified in the µ-law encoded signals. The scale of values that

were not close to zero is similar. Multiple studies report increased performance when

using the µ-law encoding (Rahimian et al., 2021; Rahimian et al., 2020).

2.2.2 Domain of Attention

Information in biomedical time series is generally encoded in three domains: the time

domain, the frequency domain, and the spatial domain. Depending on the signal and

the task, it might be beneficial to apply the attention mechanism (see section A.2 in Ap-

pendix A) in one or more of these domains.

2.2.2.1 Frequency Attention

Brain signals such as EEG are known to encode important information in the frequency

domain (Saby & Marshall, 2012; Tsipouras, 2019). The time series data is typically

converted, from the time domain to the frequency domain, using some form of the

Fourier transform (FT; Bracewell & Bracewell, 1986). The attention mechanism is

then applied to sequences of vectors that contain frequency information for segments in

the time series signal, i.e. attention is applied across the time domain, in the frequency

domain (Cai et al., 2022; Hussein et al., 2022).

2.2.2.2 Temporal Attention

For sEMG, we typically only consider the frequency domain when trying to quantify

muscle fatigue (Viitasalo & Komi, 1977). In contrast, for decoding movements from

sEMG recordings the time domain is considered more informative (Tkach et al., 2010).

In this context, it is usually the case that multiple sensors record sEMG from different

areas, in an attempt to target various muscles. Approaches that implement the attention

Chapter 2. Background 11

mechanism tend to apply it across the spatial domain, in the time domain (Rahimian

et al., 2021). In such approaches, the positional encodings of the transformer (see

Section A.1) relate to the positions of the electrodes. With fixed positional encodings,

the actual electrode positions must be accounted for in the encoding scheme. On the

other hand, when the positional encodings are learnt they can indicate if the model is

able to separate electrodes and, by extension, muscle groups.

2.2.2.3 Spatio-Temporal Attention

Considering temporal and spatial information independently is a limitation of tradi-

tional sEMG feature extraction methods (Jabbari et al., 2021). Prominent DL ap-

proaches address this limitation by combining CNNs and LSTMs to capture the spatio-

temporal characteristics of sEMG signals (Y. Wu et al., 2018; Xia et al., 2018). More

recent work proposes transformer architectures that implement spatio-temporal atten-

tion as a solution (Y. Wang et al., 2023). This type of attention segments input sEMG

windows into patches which are flattened over the electrode dimension. The atten-

tion mechanism is thus applied across the time domain, in the spatio-temporal domain.

For spatio-temporal attention (and frequency attention) the positional encodings of the

transformer relate to positions in time. When such positional encodings are learnt they

can indicate if the model captures the continuous trajectories in its training samples.

2.2.2.4 Combinations

At the cost of more parameters, above types of attention can be combined. For ex-

ample, Zabihi et al. (2022) implement a two-channel transformer-like architecture that

implements temporal and spatio-temporal attention in parallel. Their model consists of

two transformers, one applying the former and the other the latter. The outputs of the

two are summed or concatenated and passed to a Multi-Layer Perceptron for further

processing (MLP; McCulloch & Pitts, 1943). Zabihi et al. observe increased classi-

fication accuracy when classifying sEMG into hand gestures using the two-channel

model. The catch with this approach is that the number of weights are almost doubled.

A different approach applies temporal and spatio-temporal attention in sequence (Y.

Wang et al., 2023). Inputs are firstly embedded using temporal attention, the result-

ing embeddings subsequently go through spatio-temporal attention. This approach re-

quires only a marginal increase in parameters and allows for simultaneous processing

of features that have been contextualised with both types of attention.

Chapter 3

Methodology

3.1 Data

The data in this work comes from the Non Invasive Adaptive Prostheses database (Ni-

napro; Atzori et al., 2014), a publicly available multimodal database established to fos-

ter research on machine learning control systems of prosthetic hands. I use its eighth

dataset (DB8; Krasoulis et al., 2019), which is specifically aimed at the estimation of

finger movement. A crucial aspect for this focus is that participants wear a ‘dataglove’

that records finger kinematics. DB8 is the dataset that Krasoulis and Nazarpour (2020)

originally used to evaluate their digit action decoding control algorithm, hence this

dataset will allow comparisons with the traditional ML models Krasoulis and Nazar-

pour investigated.

3.1.1 Acquisition Protocol

DB8 consists of sEMG recordings of 12 participants performing nine movements, in-

cluding single-finger as well as functional movements. Two of the 12 participants are

people with limb difference, with right-hand transradial (below elbow) amputations.

Participants sit as visual cues on a monitor indicate when they should perform which

movement. Participants are equipped with two pieces of recording hardware. Firstly,

16 sEMG electrodes (12 and 13 for the participants with limb difference, respectively)

are positioned in two rings of eight around the right forearm, as can be seen in Fig-

ure 3.1a. No specific muscles are targeted. Secondly, participants wear a dataglove

that records their left (i.e. the other) hand and finger kinematics from 18 DOFs, as can

be seen in Figure 3.1b. Further hardware details are given by Krasoulis et al. (2019).

12

Chapter 3. Methodology 13

(a) EMG sensor placement (b) dataglove

Figure 3.1: Ninapro DB8 data acquisition hardware and placement. On the left, the

sEMG electrodes are positioned in two rings of eight around the right forearm. The

rings are shifted with respect to each other. On the right, the dataglove records hand

and finger kinematics from 18 DOFs. Pictures by Krasoulis et al. (2019).

During the acquisition, participants repeat nine movements using both hands, as

can be seen in Figure 3.2. The duration varies between 6 s to 9 s. Consecutive trials are

separated by 3 s of rest. Trials start by participants holding their fingers in the rest state

(i.e. movement 0). Mirroring an example on the monitor, they gradually move their

fingers to reach the target movement, subsequently returning to the rest state before

the end of the trial.

For each participant there are three acquisitions, intended as training, validation,

and testing splits. The training and validation splits comprise ten repetitions of each

movement, while the testing split contains only 2 repetitions. The acquisitions were all

recorded in the same session, with ten minutes of rest in between.

3.1.2 Processing

The sEMG signals are recorded at a 2 kHz sampling rate. We band-pass filter them,

preserving the 10 Hz to 500 Hz range using a fourth-order digital band-pass Butter-

worth (1930) filter. This frequency range is widely accepted to be the range wherein

most sEMG activity happens (Komi & Tesch, 1979). Subsequently, we compute the

envelopes of the signals via a first-order digital low-pass Butterworth (1930) filter. We

use 1 Hz cutoff, simplifying the envelopes as much as possible. We then min-max

normalise the envelopes to [0,1] via formula (2.1), using the minimum and maximum

Chapter 3. Methodology 14

0. rest

1. thumb flexion/extension

2. thumb abduction/adduction

3. index finger flexion/extension

4. middle finger flexion/extension

5. ring and little fingers flexion/extension

6. index pointer

7. cylindrical grip

8. lateral grip

9. tripod grip

Figure 3.2: Ninapro DB8 movements. Movements 1 to 5 are single-finger movements,

for example flexing/extending the index finger. Movements 6 to 9 are functional move-

ments, for example cylindrical grip, mimicking grasping a bottle.

across all sensors of the training dataset (i.e. the first acquisition). Then, we trans-

form the normalised envelopes using the µ-law encoding, amplifying the values close

to zero. Since the envelopes are already in [0,1], the sign function and absolute value

in formula (2.2) can be dropped, yielding:

x′(t) =
ln(1+µx(t)

ln(1+µ)
, (3.1)

with µ = 255. Finally, we segment the signals using a 128 ms sliding window with a

50 ms stride (i.e. around 60 % overlap), conforming to the processing of Krasoulis and

Nazarpour (2020). This results in approximately 25×103 windows for the training and

validation acquisitions and approximately 5×103 windows for the testing acquisitions.

A number of baseline models I will compare to require sEMG features, instead of

time series envelopes. Therefore, parallel to the envelopes, we compute a set of 18 fea-

tures from the signals that are band-pass filtered and windowed as before. The features

are the Wilson amplitude, log variance, Hjorth (activity, mobility, and complexity;

1970), kurtosis, fourth-order autoregressive coefficients, waveform length, and skew-

ness, conforming to the analysis of Krasoulis and Nazarpour (2020). I chose to extend

this set with six spatio-temporal features designed by Samuel et al. (2019), which have

been found effective in recent DL-based sEMG decoding work (Jabbari et al., 2021).

3.1.3 Labels

Each window is associated with two types of labels. On the one hand, we have a

movement label, corresponding to the movements in Figure 3.2. These are recorded

within the dataset and do not require any processing. On the other hand, we have the

finger (or digit) actions, as defined by Krasoulis and Nazarpour (2020). We extract

these labels from the finger kinematics recorded by the dataglove, as follows. Firstly,

we linearly transform the 18 DOFs of the dataglove (see Figure 3.1b) into joint angles

Chapter 3. Methodology 15

Table 3.1: Dataglove to digit DOF transformation matrix. As an example, consider

ring flexion, which is defined here as a linear combination of 0.3333 times the tenth

dataglove DOF and 0.6666 the eleventh dataglove DOF. See Figure 3.1b for a visuali-

sation of the dataglove DOFs. The matrix was copied from the supplementary material

of the work of Krasoulis et al. (2019).

DOF
thumb

rotation

thumb

flexion

index

flexion

middle

flexion

ring

flexion

little

flexion

1 0.639 0 0 0 0 0

2 0.383 0 0 0 0 0

3 0 1 0 0 0 0

4 -0.639 0 0 0 0 0

5 0 0 0.4 0 0 0

6 0 0 0.6 0 0 0

7 0 0 0 0.4 0 0

8 0 0 0 0.6 0 0

9 0 0 0 0 0 0

10 0 0 0 0 0.3333 0

11 0 0 0 0 0.6666 0

12 0 0 0 0 0 0

13 0 0 0 0 0 0.3333

14 0 0 0 0 0 0.6666

15 0 0 0 0 0 0

16 -0.19 0 0 0 0 0

17 0 0 0 0 0 0

18 0 0 0 0 0 0

for the following six DOFs: thumb rotation, flexion/extension of the thumb, index,

middle, ring, and little digits. Krasoulis et al. (2019) identified and verified a transfor-

mation matrix that achieves this empirically. We use the exact same matrix here, given

in Table 3.1. Secondly, we min-max normalise the resulting six DOF angle trajecto-

ries to [0,1], using the minimum and maximum of the training acquisition. Thirdly,

we again simplify the normalised trajectories by calculating the envelopes in the same

way as for the sEMG signals, using a 1 Hz cutoff. At this point, we have smooth angle

trajectories for all six DOFs. We can compute the digit actions from these by, firstly,

estimating joint velocities through computing the first-order differences of the trajec-

tories, and then, thresholding these velocities using tolerance ε = 0.004. We assign

velocities larger than ε the ‘close’ label, velocities smaller than −ε the ‘open’ label,

and velocities in [−ε,ε] the ‘stall’ label, corresponding to no movement. Joint angles

that are less than 7.5 % away from either boundary (i.e. 0 or 1, corresponding to fully

open or fully closed), we assign the labels corresponding to that boundary, regardless

of the velocities.

Chapter 3. Methodology 16

0.0

0.5

1.0

Po
si

tio
n

Thumb rotation

open

stall

close

Ac
tio

n

0.0

0.5

1.0

Po
si

tio
n

Thumb flexion

open

stall

close

Ac
tio

n

0.0

0.5

1.0

Po
si

tio
n

Index flexion

open

stall

close

Ac
tio

n

0.0

0.5

1.0

Po
si

tio
n

Middle flexion

open

stall

close

Ac
tio

n

0 5 10 15 20 25 30
Time [s]

0.0

0.5

1.0

Po
si

tio
n

Ring flexion

open

stall

close

Ac
tio

n

0 5 10 15 20 25 30
Time [s]

0.0

0.5

1.0

Po
si

tio
n

Little flexion

open

stall

close

Ac
tio

n

Figure 3.3: An example of how digit action labels are calculated from the six position

trajectories. The joint angle trajectories for each DOF (grey traces, left y-axes) are nor-

malised between zero (i.e. fully open) and one (i.e. fully closed). The velocities of the

trajectories are estimated and transformed into the digit action labels by thresholding

(black traces, right y-axes). This excerpt uses the data from the third acquisition of

the first participant of DB8, the participant is performing the seventh movement, i.e.

cylindrical grip (see Figure 3.2). Figure after that of Krasoulis and Nazarpour (2020).

The above procedure follows exactly that of Krasoulis and Nazarpour (2020), en-

suring comparability. Figure 3.3 visualises an example of the procedure. Both types

of labels are highly imbalanced. Approximately 75 % of the digit actions are ‘stall’,

where the remaining 25 % is evenly divided across the ‘open’ and ‘close’ labels. This

is the case consistently across participants. In contrast, the percentage of rest state la-

bels varies significantly per participant, with a minimum of 47 % and a maximum of

66 %. The respective remaining movement labels are generally evenly divided across

the nine non-rest movements.

3.2 Model

Figure 3.4 visualises the transformer-like architecture I evaluate in this work. The

model is similar to that of Zabihi et al. (2022), with temporal and spatio-temporal at-

tention in parallel. Data flows through two transformers, denoted ‘TNET’ and ‘FNET’,

applying temporal and spatio-temporal, respectively.

Chapter 3. Methodology 17

Linear

0

1

2

n

Transform
er

Softm
ax

Linear

0

1

2

Transform
er

Softm
ax

Linear

T
N
E
T

F
N
E
T

...

...

...

...

...
Linear

n

+

+

+

+

+

+

+

+

Embedding Size

Positional Encoding

Softm
ax

Linear
Linear

16
 se

ns
or

s

128ms at 2KHz

concat

F
U
L
L

yTNET

yFNET

yFULL

Figure 3.4: Visualisation of the transformer-like architecture. Data from 16 sEMG

electrodes flows through the model in two possible ways. The TNET receives one to-

ken per electrode and applies temporal attention over the linear envelopes. The FNET

receives one token per time patch and applies spatio-temporal attention over segments

of the linear envelopes for each electrode. The patches are always of length 16, corre-

sponding to the number of electrodes. With 128 ms at 2 kHz, this results in 16 tokens

of 16 values per electrode. In both cases, learnt positional encodings are added to the

tokens after they are linearly transformed to the model embedding size. Positionally

encoded tokens (green-blue) then go through a number of transformer-encoder blocks,

yielding contextualised output tokens (pink-orange). When the TNET or FNET are

considered individually these then go through appropriate linear and softmax layers

yielding class probabilities. When they are combined into the FULL model, the output

tokens are concatenated and passed through two linear layers followed by a softmax

layer, yielding class probabilities that account for both types of attention.

We transform input windows into vectors of a general model embedding size via

a linear layer. We add learn positional encodings to the resulting tokens (see Sec-

Chapter 3. Methodology 18

tion A.1). The tokens then go through a traditional transformer-encoder consisting of a

sequence of encoder blocks (see Section A.4). Depending on the control paradigm, and

the DOFs it implements, we select a certain number of output tokens. In the case of the

traditional movement decoding paradigm, we only keep the first output token, for the

digit action decoding paradigm, we keep the first six output tokens. The output tokens

then go through a linear layer followed by a softmax layer to result in normalised class

probabilities. In the digit action decoding paradigm, since the classes are the same for

all digits, the linear layer is shared across digits. This forces more computation into

the transformers, which is generally desirable.

The two transformers can be seen as separate models. However, Zabihi et al. (2022)

reason that a combination of both is more powerful. To combine them, they pair-wise

sum the selected output tokens of both channels, yielding a new set of tokens that

can be passed through separate linear and softmax layers. The combined model is

trained jointly, by backpropagating the sum of the three losses. I opt here for a more

recent approach, after the work of Montazerin et al. (2023), who see the two trans-

formers as independent feature extractors and train and optimise them independently.

The combined FULL model then freezes both channels, concatenates their output to-

kens, and only trains the output layers, which are extended with another feed-forward

linear layer. While the first approach can be said to encompass the second approach, it

requires training twice as much parameters at once. Since training data is limited, this

can result in underfitting, yielding performance lower than achieved when the parts

of the model are trained individually. I chose to not put the two types of attention in

sequence for the same reason. With only around 25×103 training samples, we should

keep the number of model parameters as small as possible.

3.3 Training

We train the model using mini-batch gradient descent (LeCun et al., 2015) with the

sum of cross-entropy losses over all outputs. I opted for L2-regularisation (Krogh &

Hertz, 1991) and dropout to reduce overfitting (Srivastava et al., 2014). We train each

configuration on the training acquisition for 40 epochs. Every epoch, we compute

performance on the validation acquisition. We evaluate the instance that achieves the

highest validation performance during the 40 epochs on the testing acquisition.

I implemented everything in PyTorch (Paszke et al., 2019) and made the source

code available on GitLab (see Appendix B). Read Appendix C for further details.

Chapter 3. Methodology 19

3.4 Hyperparameters

The model has a number of hyperparameters. Three of them relate to the training

process: batch size, learning rate, and weight decay. The remaining five are inherent

to the transformer architecture (see Appendix A): embedding size, number of atten-

tion heads, number of encoder blocks, the activation function, and dropout rate. We

look for good values for these hyperparameters through 20 hyperparameter optimisa-

tion (HPO) trials, guided using tree-structured parzen estimators (TPE; Bergstra et al.,

2011). Further details regarding my HPO approach are provided in Appendix D.

3.5 Evaluation

3.5.1 Metrics

Evaluating the single-output movement decoding models can be done using traditional

multi-class classification metrics such as classification accuracy and the confusion ma-

trix. In contrast, multiple outputs, each of which can take on multiple classes, introduce

considerations such as class imbalance and output dependencies. For the control of the

digits of a prosthetic hand, the DOFs are generally not independent and, depending on

the movements, certain outputs can be seen as more important. Since this is an offline

analysis, the goal is to get a general idea of the capabilities of the model, and compar-

ing it to existing approaches. I thus evaluate the model using performance measures

typical of an offline analysis (Krasoulis & Nazarpour, 2020), leaving measures more

relevant for an online analysis for future work (Krasoulis & Nazarpour, 2022).

An example of such a measure is the exact match ratio, i.e. the percentage of sam-

ples for which all outputs are correctly classified. The exact match ratio is very strict,

increasing in strictness with the number of outputs. While relevant for an online anal-

ysis, the model in this work is not yet in that stage of the research pipeline. An alter-

native is the hamming score, i.e. the number of correctly classified labels to the total

number of labels, across outputs. This metric is less strict than the exact match ratio,

but highly sensitive to imbalance in the data. Since the class labels are significantly

skewed towards the ‘stall’ class, the hamming score will generally be high for models

that keep all digits from moving and low for models that can correctly predict digit

actions but sometimes moves them when it is not supposed to.

Remaining options are metrics typically used for single-output tasks, but averaged

Chapter 3. Methodology 20

across outputs and classes. Examples are precision, recall, and F1-score, which is the

harmonic mean of the former two. These metrics suffer less from imbalance in the data

and are less strict than the exact match ratio. They are also the metrics that Krasoulis

and Nazarpour (2020) use, with F1-score as main performance measure. To maximise

comparability, I follow their approach.

Averaging over outputs and classes provides an overall metric of the model’s per-

formance. To get more detailed insights into its strengths and weaknesses I will analyse

these metrics per class and per output. This can be done by computing confusion ma-

trices independently for each output. Although such confusion matrices do not show

where the shared-core model achieves additive improvements, they can inform us on

which outputs are harder to decode than others.

3.5.2 Baselines

In the movement decoding paradigm, I compare to two baselines. Firstly, a model

that always predicts the rest movement, denoted ‘All rest’. Secondly, a Linear Dis-

criminant Analysis model (LDA; Izenman, 2008) trained on the sEMG features (see

Section 3.1.2).

Similarly, in the digit action decoding paradigm, I compare to a model that pre-

dicts the ‘stall’ class for every input and DOF, denoted ‘All stall’. As well as to an

LDA model trained on the sEMG features, independently for each DOF. Additionally,

I compare to a model that applies attention across the spatial domain, in the domain of

the sEMG features, denoted ‘FTR’. The FTR configuration represents a small trans-

former that does not compute its own features from the raw sEMG data, but has to

work with the handcrafted features. Thereby, it can yield insight into the benefits of

training a transformer model with linear envelopes, i.e. allowing it to calculate its own

features.

3.5.3 Comparison

Since results come per participant, I always compare the performance of groups of

models using a paired t-test with significance level α = 0.05 (Ross & Willson, 2017).

I correct for multiple comparisons using the Bonferroni correction (Bland & Altman,

1995).

Chapter 4

Results

4.1 Movement Decoding

Figure 4.1 gives the classification accuracy of the two baselines and the transformer

models, in the movement decoding paradigm, i.e. models classify inputs into a single

movement (see Figure 3.2). LDA achieves the highest median classification accuracy,

but is not statistically discernible from the FULL and FNET configurations. All three

of these configurations have outlier participants. The TNET configuration seems to

All rest LDA FULL FNET TNET
0.0

0.2

0.4

0.6

0.8

1.0

C
la

ss
ifi

ca
tio

n
Ac

cu
ra

cy

0.603

0.791 0.772 0.778 0.755

*

ns

ns

*

Figure 4.1: Comparison of movement classification accuracy for baselines and trans-

formers. The median is given above each box-plot. Statistical comparisons are per-

formed only against the best-performing algorithm; asterisk: p < 0.05, ‘ns’: p > 0.05.

21

Chapter 4. Results 22

re
st

cy
lin

dr
ica

l g
rip

ind
ex

 fle
xio

n/e
xte

ns
ion

ind
ex

 po
int

lat
er

al
gr

ip

midd
le

fle
xio

n/e
xte

ns
ion

rin
g&

lit
tle

 fle
xio

n/e
xte

ns
ion

th
um

b a
bd

uc
tio

n/a
dd

uc
tio

n

th
um

b f
lex

ion
/ex

ten
sio

n

tri
po

d g
rip

rest

cylindrical grip

index flexion/extension

index point

lateral grip

middle flexion/extension

ring&little flexion/extension

thumb abduction/adduction

thumb flexion/extension

tripod grip

Pr
ed

ic
te

d
C

la
ss

0.86 0.08 0.16 0.04 0.24 0.22 0.08 0.04 0.02 0.13

0.02 0.43 0.01 0.06 0.09 0.01 0.03 0.19 0.14 0.13

0.04 0.03 0.56 0.01 0.05 0.05 0.04 0.0 0.02 0.05

0.01 0.05 0.01 0.73 0.01 0.01 0.04 0.0 0.0 0.01

0.01 0.07 0.08 0.09 0.43 0.01 0.03 0.01 0.04 0.02

0.04 0.01 0.1 0.02 0.01 0.56 0.1 0.01 0.0 0.03

0.01 0.01 0.07 0.02 0.02 0.03 0.66 0.0 0.0 0.0

0.0 0.14 0.0 0.01 0.02 0.0 0.01 0.45 0.15 0.08

0.01 0.09 0.0 0.01 0.08 0.0 0.0 0.14 0.55 0.06

0.01 0.11 0.0 0.01 0.04 0.12 0.02 0.16 0.08 0.5

Movement

0.0

0.2

0.4

0.6

0.8

1.0

True Class

Figure 4.2: Average movement decoding confusion matrix for the FULL configuration.

The colour bar and annotated scores indicate normalised prediction rates.

be able to handle the outliers better, although this does result in lower median perfor-

mance. All models perform better than the ‘All rest’ baseline.

Figure 4.2 depicts the average confusion matrix for the FULL configuration. The

imbalance in the data shows in the disproportionate accuracy for the rest movement.

Individual class accuracy scores differ for the non-rest movements, with a minimum of

0.43 for cylindrical and lateral grip, and a maximum of 0.73 for index point.

4.2 Digit Action Decoding

Figure 4.3 gives the macro-averaged F1-score of the three baselines and the trans-

former models, in the digit action decoding paradigm, i.e. the six digit DOFs are clas-

sified into ‘open’, ‘stall’, or ‘close’. The FULL configuration achieves the highest me-

dian F1-score, although not statistically discernible from the other transformer models.

There is statistical significance between LDA and the FTR configuration. The FNET

configuration again has an outlier participant, whereas the FULL and TNET configu-

rations do not. All models perform better than the ‘All stall’ baseline.

Figure 4.4 depicts the average confusion matrices per DOF for the FULL con-

figuration. The imbalance in the data shows in the disproportionate accuracy for the

Chapter 4. Results 23

All stall LDA FTR FULL FNET TNET
0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

 (m
ac

ro
 a

ve
ra

ge
)

0.291

0.617 0.626 0.669 0.654 0.641

*

ns

*

ns

*

Figure 4.3: Comparison of digit action decoding performance using F1-score of base-

lines and transformers. The median is given above each box-plot. Statistical compar-

isons are performed only against the best-performing algorithm; asterisk: p < 0.05,

‘ns’: p > 0.05.

stall class, across DOFs. Confusion generally happens because the model predicts the

‘stall’ class when it should predict ‘open’ or ‘close’, less so the other way around. The

individual accuracy scores for the ‘open’ and ‘close’ classes are visibly lower for the

two thumb DOFs.

stall close open

stall

close

open

Pr
ed

ic
te

d
C

la
ss 0.89 0.39 0.46

0.06 0.51 0.09

0.05 0.1 0.45

Thumb rotation

stall close open

0.89 0.38 0.45

0.06 0.54 0.09

0.04 0.08 0.46

Thumb flexion

stall close open

0.88 0.27 0.29

0.07 0.68 0.09

0.05 0.05 0.63

Index flexion

stall close open

0.88 0.29 0.33

0.06 0.67 0.06

0.06 0.04 0.61

Middle flexion

stall close open

0.89 0.23 0.32

0.05 0.74 0.09

0.06 0.03 0.59

Ring flexion

stall close open

0.88 0.29 0.31

0.05 0.67 0.05

0.07 0.04 0.63

Little flexion

0.0 0.2 0.4 0.6 0.8 1.0

True Class

Figure 4.4: Average confusion matrix for each DOF for the FULL configuration. The

colour bar and annotated scores indicate normalised prediction rates.

Chapter 4. Results 24

4.2.1 Input & Model Variations

In the interest of exploring possibilities for the transformer models, I evaluate a number

of derivations. Each of the following configurations’ hyperparameters we optimised

independently:

• FULL∗: the FULL configuration but its TNET and FNET are jointly trained and

optimised, i.e. the approach of Zabihi et al. (2022).

• FULL MM: the FULL configuration but the linear envelopes are only Min-Max

normalised and not µ-law encoded, i.e. values near zero are not enlarged (see

Figure 2.3).

• FULL<3 Hz: the FULL configuration but the linear envelopes are computed us-

ing a 3 Hz cut-off instead of a 1 Hz cut-off, i.e. more oscillatory nuances are

retained in the envelopes (see Figure 2.2).

• FULL WCE: the FULL configuration but trained using weighted cross-entropy

loss to address the class imbalance (Cui et al., 2019).

• FULL 6 heads: the FULL configuration but with a separate output head for each

DOF, i.e. allowing more DOF-specific computation outside of the transformer-

encoder.

Figure 4.5 gives the macro-averaged F1-score of these variations. The FULL WCE

configuration achieves the highest median F1-score, although not statistically discernible

from most other configurations. Only the 3 Hz cut-off variation shows a statistically

significant decrease in performance.

The difference in performance between these variations is marginal. This sug-

gests that performance bottlenecks most likely lie elsewhere. Potential culprits are

inaccurate finger kinematics measurements (see Section 3.1.1), inaccurate label ex-

traction (see Section 3.1.3), insufficient data (see Section 3.1.2), and the distribution

shift between the training and testing splits. Recording more accurate finger kinemat-

ics requires recording a new dataset with potentially new equipment. This is beyond

the scope of this thesis and I therefore do not consider it. Fine-tuning Krasoulis and

Nazarpour’s (2020) method for extracting finger actions from the recorded finger kine-

matics is a possible route to take. However, the outcome of this would still heavily

depend on the accuracy of the kinematics measurements, which Krasoulis and Nazar-

pour think to be the more influential factor. Therefore, for this dissertation, I focus on

Chapter 4. Results 25

FULL FULL* FULL
MM

FULL
<3Hz

FULL
WCE

FULL
6 heads

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

 (m
ac

ro
 a

ve
ra

ge
)

0.669 0.644 0.67 0.611 0.676 0.665

*

ns

ns

ns

ns

Figure 4.5: Comparison of digit action decoding performance using F1-score of FULL

variations. The median is given above each boxplot. Statistical comparisons are per-

formed only against the best-performing algorithm; asterisk: p < 0.05, ‘ns’: p > 0.05.

investigating the effects of the distribution shift between acquisitions and an increase

in training data.

4.2.2 Cross-Acquisition Training Data

A big part of the complexity of decoding EMG signals stems from their nonstationary

nature. Recordings can differ significantly across days, recording sessions, and even

within sessions. The pre-determined training/validation/testing splits in DB8 each cor-

respond to a recording acquisition where participants had a ten-minute break in be-

tween. A break as short as ten minutes can already result in participants performing

gestures differently, because of fatigue or forgetting (Kyranou et al., 2018). Generalis-

ing across these differences is hard when training data comes from a single acquisition.

To address this, we evaluate a final set of models that is trained on data from two

separate acquisitions, denoted using ‘-MIX’. A new training split comprises all odd

repetitions from the original training acquisition and all even repetitions from the orig-

inal validation acquisition. A new validation split then comprises the leftover repeti-

tions. The testing split remains the third acquisition. These new training and validation

Chapter 4. Results 26

LDA LDA
MIX

LDA
MIXL

FULL FULL
MIX

FULL
MIXL

0.0

0.2

0.4

0.6

0.8

1.0

F1
-s

co
re

 (m
ac

ro
 a

ve
ra

ge
)

0.617 0.662 0.663 0.669
0.727 0.738

ns

*

*

*

*

Figure 4.6: Comparison of digit action decoding performance using F1-score of LDA

and the FULL configuration when trained with mixed acquisition data. The median

is given above each box-plot. Statistical comparisons are performed only against the

best-performing algorithm; asterisk: p < 0.05, ‘ns’: p > 0.05.

splits each consist of ten repetitions of movements, just as the original splits. They

should yield insight into the capability of the models to generalise over acquisitions.

To also get insight into the benefit of having more training data, we establish a

third set of splits with a larger training split, denoted using ‘-MIXL’. Specifically, the

validation split comprises only the fifth repetition of the original training and validation

splits. The remaining 18 repetitions then form a large training split.

Figure 4.6 gives the macro-averaged F1-score of LDA and the FULL configuration

when trained on the three sets of splits. The FULL-MIXL configuration achieves the

highest median F1-score, although not statistically discernible with the FULL-MIX

configuration. There is statistical significance with all LDA models and with the FULL

configuration when trained using the original splits. Performance for both models

visibly increases when training data is mixed. There is no statistical basis to claim that

a larger training split results in increased performance. The MIX and MIXL versions

of both LDA and the FULL configuration all have an outlier. This outlier is always the

performance for the 12th participant, indicating that there might have been issues in

Chapter 4. Results 27

stall close open

stall

close

open
Pr

ed
ic

te
d

C
la

ss 0.91 0.33 0.44

0.05 0.6 0.08

0.05 0.07 0.47

Thumb rotation

stall close open

0.91 0.32 0.39

0.05 0.6 0.07

0.04 0.08 0.54

Thumb flexion

stall close open

0.91 0.24 0.28

0.05 0.72 0.07

0.05 0.04 0.65

Index flexion

stall close open

0.91 0.24 0.28

0.05 0.73 0.06

0.05 0.02 0.66

Middle flexion

stall close open

0.91 0.19 0.28

0.04 0.8 0.07

0.05 0.02 0.65

Ring flexion

stall close open

0.9 0.21 0.28

0.04 0.76 0.04

0.06 0.03 0.67

Little flexion

0.0 0.2 0.4 0.6 0.8 1.0

True Class

Figure 4.7: Average confusion matrix for each DOF for the FULL-MIX configuration.

The colour bar and annotated scores indicate normalised prediction rates.

the recording of the validation acquisition of this participant.

Figure 4.7 depicts the average confusion matrices per DOF for the FULL-MIX con-

figuration. Similar patterns are visible as for the FULL configuration. The increases

are generally in the ‘open’ and ‘close’ classes, for which the FULL-MIX configuration

predicts ‘stall’ less than the FULL configuration.

4.2.3 Independent Output Models

An important comparison for this work is that with models that assume the six output

DOFs to be independent, such as those of Krasoulis and Nazarpour (2020). Table 4.1

presents our results side-by-side.

The performance of the main and extended transformer variations is similar to that

of the independent output models. The FULL configuration achieves a higher median

F1-score than the best-performing independent output model RDA. The median exact

match ratio of the FULL configuration is similar to that of RDA. The best-performing

models in terms of median exact match ratio are Krasoulis and Nazarpour’s indepen-

dent output random forests (RF), which also perform well in terms of precision. These

are the only metrics for which the independent output models outperform the trans-

former models, albeit marginally.

When compared to Krasoulis and Nazarpour’s classifier chain approach (CC, see

Section 2.1.2), the transformer models provide significant improvements in all metrics.

Overall, the CC models perform worst. A potential cause is that these models are still

trained with handcrafted features. An interesting comparison in the future could com-

pare a CC consisting of transformer models trained on linear envelopes. The results

of such a comparison should shed light on whether the handcrafted features are the

bottleneck that limit a CC in learning the dependencies between the outputs.

Chapter 4. Results 28

Table 4.1: Median scores and overall ranges for each comparison set of models. Bold

values indicate the highest median performance for each set.

Model F1-score (macro-average) Exact Match Ratio Hamming Score Recall (macro-average) Precision (macro-average)

independent
output
models

(Krasoulis & Nazarpour, 2020)

RDA 0.64 (0.56, 0.69) 0.58 (0.52, 0.62) 0.82 (0.79, 0.84) 0.63 (0.54, 0.70) 0.67 (0.59, 0.70)

QDA 0.63 (0.39, 0.67) 0.53 (0.03, 0.60) 0.78 (0.40, 0.81) 0.66 (0.58, 0.73) 0.61 (0.51, 0.65)

RF 0.61 (0.50, 0.68) 0.62 (0.57, 0.64) 0.84 (0.81, 0.85) 0.57 (0.47, 0.66) 0.77 (0.65, 0.81)
GNB 0.57 (0.49, 0.63) 0.54 (0.10, 0.57) 0.76 (0.61, 0.78) 0.59 (0.54, 0.69) 0.58 (0.47, 0.61)

KNN 0.56 (0.46, 0.63) 0.58 (0.51, 0.62) 0.82 (0.77, 0.83) 0.52 (0.44, 0.61) 0.65 (0.50, 0.70)

LR 0.56 (0.45, 0.66) 0.58 (0.55, 0.60) 0.82 (0.80, 0.84) 0.53 (0.43, 0.65) 0.69 (0.62, 0.72)

ET 0.51 (0.43, 0.62) 0.59 (0.56, 0.62) 0.83 (0.80, 0.84) 0.47 (0.41, 0.60) 0.76 (0.68, 0.83)

All stall 0.33 (0.33, 0.33) 0.10 (0.08, 0.15) 0.61 (0.58, 0.66) 0.33 (0.33, 0.33) 0.33 (0.33, 0.33)

LDA 0.64 (0.55, 0.70) 0.59 (0.53, 0.62) 0.83 (0.79, 0.85) 0.62 (0.54, 0.69) 0.70 (0.58, 0.73)

classifier chains
(Krasoulis & Nazarpour, 2020)

CC (best) 0.63 (0.53, 0.66) 0.53 (0.44, 0.60) 0.80 (0.70, 0.83) 0.61 (0.54, 0.67) 0.66 (0.51, 0.71)
CC (worst) 0.61 (0.53, 0.66) 0.53 (0.44, 0.60) 0.80 (0.70, 0.83) 0.60 (0.54, 0.67) 0.65 (0.52, 0.71)

CC ensemble 0.63 (0.55, 0.67) 0.53 (0.44, 0.60) 0.80 (0.71, 0.83) 0.61 (0.55, 0.68) 0.66 (0.53, 0.72)

baselines
&

transformers

All stall 0.29 (0.28, 0.30) 0.56 (0.55, 0.59) 0.77 (0.75, 0.80) 0.33 (0.33, 0.33) 0.26 (0.25, 0.27)

LDA 0.62 (0.58, 0.68) 0.58 (0.09, 0.62) 0.82 (0.73, 0.85) 0.61 (0.57, 0.67) 0.67 (0.57, 0.73)

FTR 0.63 (0.56, 0.70) 0.58 (0.43, 0.63) 0.82 (0.78, 0.86) 0.61 (0.54, 0.68) 0.68 (0.57, 0.74)

FNET 0.65 (0.38, 0.73) 0.57 (0.49, 0.62) 0.83 (0.75, 0.86) 0.65 (0.39, 0.73) 0.71 (0.53, 0.82)

TNET 0.64 (0.53, 0.70) 0.57 (0.49, 0.65) 0.83 (0.75, 0.85) 0.61 (0.57, 0.70) 0.69 (0.57, 0.76)

FULL 0.67 (0.59, 0.71) 0.58 (0.41, 0.64) 0.84 (0.77, 0.86) 0.66 (0.58, 0.69) 0.72 (0.60, 0.75)

FULL
variations

FULL* 0.64 (0.29, 0.70) 0.58 (0.39, 0.64) 0.82 (0.78, 0.86) 0.61 (0.33, 0.68) 0.70 (0.26, 0.80)

FULL MM 0.67 (0.56, 0.71) 0.58 (0.17, 0.64) 0.84 (0.73, 0.86) 0.66 (0.55, 0.71) 0.71 (0.58, 0.79)
FULL<3Hz 0.65 (0.53, 0.69) 0.56 (0.48, 0.62) 0.82 (0.79, 0.86) 0.62 (0.49, 0.70) 0.68 (0.57, 0.77)

FULL WCE 0.66 (0.53, 0.72) 0.50 (0.36, 0.61) 0.81 (0.68, 0.85) 0.72 (0.62, 0.77) 0.65 (0.51, 0.73)

FULL 6 heads 0.66 (0.55, 0.72) 0.56 (0.48, 0.63) 0.84 (0.79, 0.86) 0.65 (0.54, 0.73) 0.71 (0.59, 0.76)

mixed
training

data

LDA MIX 0.66 (0.59, 0.70) 0.60 (0.53, 0.63) 0.84 (0.80, 0.86) 0.64 (0.59, 0.70) 0.72 (0.60, 0.75)

LDA MIXL 0.66 (0.60, 0.71) 0.60 (0.53, 0.63) 0.84 (0.80, 0.85) 0.65 (0.60, 0.71) 0.72 (0.62, 0.75)

FULL MIX 0.73 (0.63, 0.77) 0.61 (0.54, 0.66) 0.86 (0.82, 0.89) 0.72 (0.63, 0.76) 0.76 (0.65, 0.80)

FULL MIXL 0.74 (0.62, 0.78) 0.63 (0.57, 0.68) 0.87 (0.83, 0.89) 0.73 (0.59, 0.78) 0.76 (0.68, 0.80)

Although comparing the mixed training data set to the independent output models

is unfair, it does provide added insight into the benefit of training on cross-acquisition

data. Here, doing so yields significant increases in median F1-score, hamming score,

and recall. Increasing training data has a diminished effect, with a 2 % increase for the

median exact match ratio and a 1 % increase for all the other metrics.

Chapter 5

Discussion

5.1 Transformers for Movement decoding

In terms of extracting individual movements from sEMG, the transformer architecture

does not provide a significant performance increase compared to a traditional ML ap-

proach such as LDA trained on handcrafted features. In this work, this can be attributed

to the dataset’s acquisition protocol; Ninapro DB8 was not designed for such a control

paradigm (Krasoulis et al., 2019). When participants gradually move between rest and

a specific movement, very dissimilar window samples are assigned the same labels.

The transformer has to find the similarities between these windows, which will result

in computing higher-level features that resemble established sEMG window features

such as the average amplitude of the window.

I evaluate the transformer architecture in this paradigm as a safety check, to see

if I implemented everything correctly and to verify if the models learn correctly. The

conclusion there is that they do, and the results indicate that even when the transformer

can not exercise its temporal advantage (since it sees window samples as a whole, in-

stead of a feature calculated across them), it can still learn more global representations

that generalise over the dissimilar movement windows.

When data matches the movement decoding paradigm (e.g. Ninapro DB2), Zabihi

et al. (2022) show that the transformer architecture can exploit its temporal advantage

to outperform handcrafted features. They achieve significant performance increases

when compared to traditional ML approaches, indicating that there are better features

to be learned. However, this does not necessarily mean that such representations also

exist when the control paradigm implements multiple DOFs and there is only one

transformer to generalise over them.

29

Chapter 5. Discussion 30

5.2 Transformers for Digit Action Decoding

The transformer architecture provides a statistically significant increase in the main

performance measure when used to extract digit actions. I have two hypotheses con-

cerning what causes this. On the one hand, the transformer can be learning represen-

tations that capture dynamics in the linear envelope windows that are not captured by

traditional handcrafted features. On the other, it can exploit its shared core to learn the

dependencies between the digits. The comparison with the FTR configuration, which

simply applies the attention mechanism to the handcrafted features but performs sim-

ilarly to LDA, strengthens the former hypothesis. Furthermore, the performance of

the FTR configuration is similar to that of Krasoulis and Nazarpour’s (2020) indepen-

dent output models, suggesting that either the model is not learning the dependencies

between the outputs, or the handcrafted features do not capture sufficient information

to do so. From this, we can only conclude that both hypotheses hold. Although not

substantial, a 3 % increase in median F1-score when compared to the best-performing

independent output model of Krasoulis and Nazarpour suggests that the transformer

architecture is finding relevant features in the linear envelopes. In addition, the fact

that it does this with a shared core shows that it might not exploit the dependencies

between the digits optimally, but it is able to at least consider them all at once.

The TNET and FNET configurations seem to have their own strengths and weak-

nesses. The FNET configuration has outlier performance for the ninth participant, in-

dicating a possibly less stable model. The TNET configuration does not have outliers

but has a lower median performance. Nevertheless, both of these configurations are

not statistically discernible, so these differences could come down to hyperparameter

values. Combining the two transformer channels into the FULL configuration yields

slightly higher performance, which is expected as the FULL model can simulate its

parts. Training both the TNET and FNET simultaneously, i.e. the FULL∗ configura-

tion, does not result in increased performance. The most likely explanation for this is

that there is insufficient data. The FULL∗ configuration is definitely the most powerful

model, and thereby also the most likely model to be able to exploit the dependencies

between outputs. However, we need more data to be able to test such a hypothesis.

Other variations of the architecture and data processing do not impact performance

much. Choosing a higher frequency cut-off for the envelope calculation seems to

decrease performance. An interesting observation is that while the F1-score of the

weighted loss configuration is similar to that of the non-weighted version, its exact

Chapter 5. Discussion 31

match ratio and precision lie much lower and its recall lies much higher. Naturally,

this is because the class proportions in the testing acquisition are the same as in the

training acquisition, i.e. severely skewed towards the ‘stall’ class, which should also

be the case in real-life usage. This raises the question of whether we can design a model

that can take this imbalance into account without compromising performance for the

most represented classes. A potential approach could be a two-phased model that first

decides whether or not the digit is stalling, and if so, only then decides whether it is

opening or closing.

5.2.1 Cross-Acquisition Transfer

The most evident way to increase performance after observing that various architecture

and processing methods do not change much, is introducing more and/or more variable

data. The results here show that the latter on its own can already increase performance

significantly. This holds for both LDA and the transformer model. Increasing train-

ing data yields a larger performance increase, although not linearly nor statistically

discernible.

There is no basis to claim that the transformer architecture is able to make better

use of cross-acquisition data than the ML models with independent outputs, as LDA

achieves similar increases in performance. However, we can claim that the transformer

can generalise across acquisitions. With only ten repetitions of cross-acquisition train-

ing data, it is possible to achieve a median macro-averaged F1-score of 72.7 % on an

unseen acquisition. Such a level of performance goes beyond Krasoulis and Nazarpour

(2020, 2022) proving feasibility and indicates that the digit action decoding paradigm

can achieve high accuracy with a reasonable amount of training data.

5.2.2 Muscle Groups

By analysing the model and its performance in a bit more detail, I find that it has

some understanding of the muscle groups involved in finger movements. The model

performs worst for the thumb DOFs (see Figures 4.4 and 4.7). This is expected from

a physiological perspective as the thumb is controlled by intrinsic and deep extrinsic

muscles not easily accessible from the surface of the forearm. Furthermore, it matches

previous work on extraction of digit actions/trajectories (Ngeo et al., 2014).

The positional encodings of the TNET configuration, i.e. the model that applies

temporal attention, can yield further insight into the transformer’s understanding of

Chapter 5. Discussion 32

1 2 3 4

5 6 7 8

1 16

1

16

9 10 11 12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.1: Positional encoding similarities for the TNET configuration for all partic-

ipants. Each row in each figure represents the cosine similarity between one position

and all the other positions. Participants 11 and 12 were people with limb difference for

which there were only 13 and 12 electrodes, respectively.

the muscles. Figure 5.1 depicts cross-similarities for the positional encodings of the

TNET models of all participants. For the majority of the participants the similarity

maps only depict similarity on the diagonal. Intuitively, this might make it seem as

if the model is not using positional information at all. However, training the model

without positional encodings results in substantial performance decreases (up to 20 %

in median F1-score), indicating that the model does in fact learn and use positional in-

formation. The diagonal similarity maps rather indicate that the models do not capture

electrode similarities for these participants.

For some participants (1, 3, 4, and 11), the models do identify similarities and

inverses in the electrodes. For these participants, the similarity maps roughly match

the electrodes’ positions depicted by Figure 3.1a. Lines parallel to the diagonal (most

clear for participant 11) indicate similarity with electrodes opposed to each other in

the double ring formation. Square patterns on the diagonal indicate similarity with

electrodes adjacent in the rings.

It is difficult to pinpoint the cause of why the model finds similarities for some par-

ticipants and not for others. It could be that the electrodes of the participants for which

there are clear similarity patterns are positioned closer to each other, as a result of less

Chapter 5. Discussion 33

1 2 3 4

5 6 7 8

1 16

1

16

9 10 11 12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.2: Positional encoding similarities for the TNET-MIX configuration for all

participants. Each row in each figure represents the cosine similarity between one

position and all the other positions. Participants 11 and 12 were people with limb

difference for which there were only 13 and 12 electrodes, respectively.

surface areas because of thinner arms. However, this is disproved by the similarity

maps of the TNET-MIX configuration in Figure 5.2. Remember that the training data

for this configuration comes from two acquisitions, separated by a ten minute break

during which the electrodes were not removed from the participants’ arms (see Sec-

tion 3.1.1). Comparing to the similarity maps of the TNET models, we can see that

there are now participants with clear similarity patterns, where there were not before.

This suggests that when the TNET configuration was trained within one acquisition,

it was less inclined to focus on muscle similarity and was in some way overfitting on

characteristics specific to that acquisition. In contrast, when training samples come

from two acquisitions, it is forced to focus on more transferable characteristics. Since

the electrodes were not moved between acquisitions, their position and similarities

between them seem to be part of such characteristics. This is also reflected by the

increased performance of the TNET-MIX configuration.

Interestingly, when training data still comes from two acquisitions but there is al-

most twice as much, Figure 5.3 depicting the similarity maps for the TNET-MIXL

configuration suggests that the models seem to once more disregard muscle similarity.

It is not clear why this happens. An unlikely explanation is that the additional sam-

Chapter 5. Discussion 34

1 2 3 4

5 6 7 8

1 16

1

16

9 10 11 12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.3: Positional encoding similarities for the TNET-MIXL configuration for all

participants. Each row in each figure represents the cosine similarity between one

position and all the other positions. Participants 11 and 12 were people with limb

difference for which there were only 12 and 13 electrodes, respectively.

ples in the training split of the MIXL configurations are particularly dissimilar from

all other samples. More likely is that the extraction of muscle similarity happens in a

deeper layer and is therefore not reflected in the positional encodings. The black-box

nature of the transformer makes proving this hypothesis difficult. An interesting exper-

iment for the future would be to train the same models with fixed positional encodings

(see Section section A.1). Two phase-shifted sinusoids could be used to establish an

encoding scheme representing the similarity between the electrodes in the double ring

formation. Doing so would force the models to consider muscle similarity in the po-

sitional encodings as well as eliminate the effect of limited training data on its spatial

understanding.

5.2.3 Correlated Samples

A similar analysis of the positional encodings of the FNET configuration yields insight

into how the model perceives temporal changes in spatio-temporal space. Figure 5.4

depicts the cross-similarities for the positional encodings of the FNET models of all

participants. Here as well, the models sometimes disregard positional similarities. In

Chapter 5. Discussion 35

1 2 3 4

5 6 7 8

1 16

1

16

9 10 11 12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 5.4: Positional encoding similarities for the FNET configuration for all partic-

ipants. Each row in each figure represents the cosine similarity between one position

and all the other positions.

the cases that it does consider them, the similarity maps seem to always be separated

into two parts, corresponding to a 40/60 % split. My hypothesis for this is that the

models are picking up on the correlation between samples, as the sEMG recordings

are segmented into windows with approximately 60 % overlap (see Section 3.1.2).

Similar patterns are visible in the similarity maps of the MIX and MIXL variants

(see Figures E.1 and E.2, in Appendix E). The fact that models are able to pick up on

these correlations indicates that reducing the overlap should not yield different results

if it would not also significantly reduce the number of windows the sEMG recordings

can be split into. In contrast, increasing overlap comes with a substantial increase in

training samples, even though they are highly correlated. Other studies evaluate spatio-

temporal attention with a range of overlaps (Zabihi et al., 2022). Although I mirrored

Krasoulis and Nazarpour’s (2020) approach in this work, it should be interesting to

explicitly look for the optimal overlap for the digit ation action decoding paradigm, as

this is a task-specific setting. In addition, it should again be interesting to implement

fixed positional encodings for spatio-temporal attention. Positions are one-dimensional

in this case so traditional encoding schemes would suffice.

Chapter 5. Discussion 36

5.2.4 Time & Space Complexity

Prediction time and memory requirements are important considerations for sEMG de-

coding models. After all, these algorithms are usually intended to run on low-memory

embedded systems and predict intention in real-time. Transformer models are uni-

versally seen as large models (e.g. large language models) and even with their depth

and width restricted (here maximally 10 layers of size 512, see Appendix D), they

do not belong to the category of models that are typically implemented in prosthesis

controllers.

The transformer uses the self-attention mechanism, which issues a query for every

position in an input sequence. Hence, its overall time and space complexity is O(n2),

with n the length of the input sequence (Vaswani et al., 2017). As such, various at-

tempts have been made at reducing these complexities, with successes able to get it

down to O(nlog(n)) using hashing (Reformer; Kitaev et al., 2020) or even O(n) with

certain approximations (Linformer; S. Wang et al., 2020). Nevertheless, even with

such reductions, the transformer architecture would still only qualify for certain cases

where prostheses come with costly portable Graphics Processing Units (GPU; Nguyen

et al., 2021) or are connected to static external processing units (H. Wu et al., 2021).

In general, the research I present in this dissertation is not intended to run on a real-

time prosthesis. With model sizes ranging between 10 MB to 70 MB, such prostheses

would not be feasible to design in terms of cost and size. The goal is rather to, on the

one hand, get insight into the capability of the architecture to learn from biomedical

time series, and on the other, push the boundaries in terms of accuracy. Moreover,

by investigating what the model learns to attend to, we can possibly discover new

features that can ultimately be used with models that do match current-day prosthesis

specifications.

Chapter 6

Conclusion

I evaluate the transformer architecture when implemented to extract finger movements

from sEMG recordings. I compare and weigh a number of configurations representing

approaches to input processing, model training, and architecture. The best-performing

model achieves a statistically significant increase in the main performance measure

when compared to previous work (Krasoulis & Nazarpour, 2020). It does this through

a combination of computing its own features of the complete sEMG windows it gets

as input and exploiting its shared core to learn dependencies between its multiple out-

puts. Through a lower-level analysis of the model, I discover that it can identify muscle

similarities and learns to use these in its computations. Furthermore, by training the

model with cross-acquisition data, I find that it can generalise across acquisitions and

that this comes with substantial performance improvements. Combined, these findings

show that the digit action decoding paradigm is not only feasible (Krasoulis & Nazar-

pour, 2020, 2022), but it is also possible to implement it with non-trivial accuracy.

There are two main limitations to my work. Firstly, I only perform offline analyses.

Real-time control is known to come with its own difficulties for which offline perfor-

mance is often not a good proxy (Ortiz-Catalan et al., 2015; Vujaklija et al., 2017).

Secondly, the scale of my evaluations is relatively small. I only consider Ninapro’s

DB8, which comprises a limited number of participants and finger movements and was

recorded in an isolated environment. The transformer architecture should be evaluated

in terms of robustness under non-stationary conditions and generalisation to unseen

finger movements. Machine learning models are known to suffer from poor generali-

sation under different limb positions and/or muscle contraction levels (Fougner et al.,

2011; Khushaba et al., 2016). The transformer architecture should be a good candidate

to address these issues.

37

Chapter 6. Conclusion 38

6.1 Contribution

In terms of the research objectives set out in Section 1.1, my contributions are the

following:

• O.1: Establishing a high-level overview of the efficacy of transformer-like archi-

tectures when employed for extracting intention from sEMG recordings.

Transformers can learn to extract intention from sEMG recordings in both the

movement and digit action decoding paradigms. They achieve slightly better

performance than the current state-of-the-art.

– What input formats work best?

Although a small transformer can learn from a collection of sEMG features,

a larger model trained on linear envelopes achieves higher performance. A

cutoff of 1 Hz performed best in this work.

– How much data is needed to achieve reasonable performance?

State-of-the-art performance is achievable with ten 6 s repetitions of train-

ing data. Using almost twice as much training data yields marginally in-

creased performance.

– Is cross-acquisition transfer feasible?

The transformer can generalise across acquisitions and achieves significant

performance boosts when doing so.

– Which patterns does the model pick up on and can these be related to bio-

physical phenomena?

The model learns positional encodings that capture similarities between

muscles (temporal attention) and correlations between samples (spatio-

temporal attention).

• O2: Verifying whether a neural model with a shared core for multiple outputs

can learn generalised representations of sEMG, comparing to models that unre-

alistically assume outputs to be independent.

The transformer architecture can learn representations of linear sEMG envelopes

that generalise to multiple outputs. As a single model, it outperforms previous

evaluations of ML models that are independently trained for each output.

Chapter 6. Conclusion 39

6.2 Prospects & Future work

The transformer architecture is relatively new, especially in biomedical contexts. As

such, a lot of research remains to be done before it will find its way into commercial

and clinical use. It is a powerful model that, as shown here, can find transferable pat-

terns in nonstationary signals. Furthermore, its popularity comes paired with a vast

interest in improving the architecture. There are complete research fields dedicated to

improving aspects of the attention mechanism such as computational complexity (S.

Wang et al., 2020) and interpretability (Chefer et al., 2021). Successes in these fields

are particularly relevant for my work as they would allow me to either, run an effi-

cient transformer on an embedded prosthesis controller, or extract the transformer’s

understanding of the sEMG recordings and use it to design more compact models.

As foremost extension to my work, I propose to further investigate the temporal

positional encodings of the model. If we can train a model on a single acquisition but

still have it learn muscle similarities as it did when trained on cross-acquisition data, I

expect performance to increase significantly. This is a difficult task because the large

model is likely to overfit with the amounts of data typical of sEMG datasets. A good

start might be to implement more advanced training approaches that use periodically

decreasing learning rates and early stopping. In parallel with this research route, it

should also be of interest to investigate fixed positional encodings. These are not af-

fected by the amount of training data and should provide a relevant baseline for their

learnt counterparts.

Another interesting route to take would be to investigate the effect of window over-

lap in the context of digit action decoding. The spatio-temporal positional encodings

of the model reflect the value of this hyperparameter, raising the question of whether

changing it will drastically change performance. Previous work uses much smaller

overlap (down to 3 %) in a movement decoding paradigm (Zabihi et al., 2022), thereby

increasing the number of training samples substantially. Even though these samples are

highly correlated, the transformer still seems to benefit from having more. It should

be interesting to verify this for the digit action paradigm. Fixed positional encodings

should provide a relevant baseline in this case as well.

Lastly, it should also be interesting to investigate hardware related questions. For

example, there is the matter of extracting digit actions from the dataglove recordings.

Datagloves are known to be designed to fit the average human finger and hand length

and circumference, often unrealistic in terms of real-life variance, as well as not tak-

Chapter 6. Conclusion 40

ing into account ageing and gender differences (Kahlesz et al., 2004). Furthermore,

the calibration process that is intended to reduce the effects of these mismatches has

been reported to be time-consuming and inadequate (Huenerfauth & Lu, 2010). In the

digit action decoding paradigm as implemented by Krasoulis and Nazarpour (2020),

this has a direct effect on model performance, as labels are computed directly from

the dataglove recordings. A promising approach addressing this dependency consists

of using neural networks to correct the dataglove recordings, alleviating the need for

calibration (Connolly et al., 2022). On the side of the electrodes, temporal attention

can be capitalised upon through high-density sEMG recordings (HD-sEMG; Celadon

et al., 2016). Such recordings are made using substantially more electrodes, potentially

increasing the transformer’s spatial field of view.

Bibliography

Akiba, T., Sano, S., Yanase, T., Ohta, T., & Koyama, M. (2019). Optuna: A next-

generation hyperparameter optimization framework. Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, 2623–2631.

Atzori, M., Cognolato, M., & Müller, H. (2016). Deep learning with convolutional

neural networks applied to electromyography data: A resource for the classifi-

cation of movements for prosthetic hands. Frontiers in Neurorobotics, 10, 9.

Atzori, M., Gijsberts, A., Castellini, C., Caputo, B., Hager, A.-G. M., Elsig, S., Gi-

atsidis, G., Bassetto, F., & Müller, H. (2014). Electromyography data for non-

invasive naturally-controlled robotic hand prostheses. Scientific Data, 1(1), 140053.

Ba, L. J., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. CoRR, abs/1607.06450.

Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for hyper-parameter

optimization. Advances in Neural Information Processing Systems, 24.

Bland, J. M., & Altman, D. G. (1995). Multiple significance tests: The bonferroni

method. BMJ, 310(6973), 170.

Bracewell, R. N., & Bracewell, R. N. (1986). The fourier transform and its applications

(Vol. 31999). McGraw-Hill New York.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., Neelakantan,

A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,

G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J., Winter, C., . . .

Amodei, D. (2020). Language models are few-shot learners. In H. Larochelle,

M. Ranzato, R. Hadsell, M. Balcan, & H. Lin (Eds.), Advances in neural infor-

mation processing systems (pp. 1877–1901). Curran Associates, Inc.

Butterworth, S. (1930). On the theory of filter amplifiers. Experimental Wireless & the

Wireless Engineer, 7, 536–541.

41

BIBLIOGRAPHY 42

Cai, S., Su, E., Xie, L., & Li, H. (2022). EEG-based auditory attention detection via fre-

quency and channel neural attention. IEEE Transactions on Human-Machine

Systems, 52(2), 256–266.

Celadon, N., Došen, S., Binder, I., Ariano, P., & Farina, D. (2016). Proportional estima-

tion of finger movements from high-density surface electromyography. Journal

of NeuroEngineering and Rehabilitation, 13, 73.

Chefer, H., Gur, S., & Wolf, L. (2021). Transformer interpretability beyond attention

visualization, 782–791.

Chowdhury, R. H., Reaz, M. B. I., Ali, M. A. B. M., Bakar, A. A. A., Chellappan,

K., & Chang, T. G. (2013). Surface electromyography signal processing and

classification techniques. Sensors (Basel, Switzerland), 13(9), 12431–12466.

Cipriani, C., Antfolk, C., Controzzi, M., Lundborg, G., Rosen, B., Carrozza, M. C., &

Sebelius, F. (2011). Online myoelectric control of a dexterous hand prosthesis

by transradial amputees. IEEE transactions on neural systems and rehabili-

tation engineering: a publication of the IEEE Engineering in Medicine and

Biology Society, 19(3), 260–270.

Connolly, J., Condell, J., Curran, K., & Gardiner, P. (2022). Improving data glove ac-

curacy and usability using a neural network when measuring finger joint range

of motion. Sensors (Basel, Switzerland), 22(6), 2228.

Cui, Y., Jia, M., Lin, T.-Y., Song, Y., & Belongie, S. (2019). Class-balanced loss based

on effective number of samples, 9268–9277.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep

bidirectional transformers for language understanding. In J. Burstein, C. Doran,

& T. Solorio (Eds.), Proceedings of the 2019 conference of the north american

chapter of the association for computational linguistics: Human language tech-

nologies, NAACL-HLT 2019, minneapolis, MN, USA, june 2-7, 2019, volume 1

(long and short papers) (pp. 4171–4186). Association for Computational Lin-

guistics.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,

Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby,

N. (2021). An image is worth 16x16 words: Transformers for image recognition

at scale.

Fougner, A., Scheme, E., Chan, A. D. C., Englehart, K., & Stavdahl, O. (2011). Re-

solving the limb position effect in myoelectric pattern recognition. IEEE trans-

BIBLIOGRAPHY 43

actions on neural systems and rehabilitation engineering: a publication of the

IEEE Engineering in Medicine and Biology Society, 19(6), 644–651.

Gallagher, P., O’Donovan, M.-A., Doyle, A., & Desmond, D. (2011). Environmental

barriers, activity limitations and participation restrictions experienced by peo-

ple with major limb amputation. Prosthetics and Orthotics International, 35(3),

278–284.

Gehring, J., Auli, M., Grangier, D., Yarats, D., & Dauphin, Y. N. (2017). Convolutional

sequence to sequence learning. Proceedings of the 34th International Confer-

ence on Machine Learning - Volume 70, 1243–1252.

Hahne, J. M., Schweisfurth, M. A., Koppe, M., & Farina, D. (2018). Simultaneous

control of multiple functions of bionic hand prostheses: Performance and ro-

bustness in end users. Science Robotics, 3(19), eaat3630.

Hjorth, B. (1970). EEG analysis based on time domain properties. Electroencephalog-

raphy and Clinical Neurophysiology, 29(3), 306–310.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computa-

tion, 9(8), 1735–1780.

Hu, R., Chen, J., & Zhou, L. (2022). A transformer-based deep neural network for

arrhythmia detection using continuous ECG signals. Computers in Biology and

Medicine, 144, 105325.

Huenerfauth, M., & Lu, P. (2010). Accurate and accessible motion-capture glove cal-

ibration for sign language data collection. ACM Transactions on Accessible

Computing, 3(1), 2:1–2:32.

Hussein, R., Lee, S., & Ward, R. (2022). Multi-channel vision transformer for epileptic

seizure prediction. Biomedicines, 10(7), 1551.

Ison, M., & Artemiadis, P. (2014). The role of muscle synergies in myoelectric con-

trol: Trends and challenges for simultaneous multifunction control. Journal of

Neural Engineering, 11(5), 051001.

Izenman, A. J. (2008). Linear discriminant analysis. In A. J. Izenman (Ed.), Mod-

ern multivariate statistical techniques: Regression, classification, and manifold

learning (pp. 237–280). Springer.

Jabbari, M., Khushaba, R., & Nazarpour, K. (2021). Spatio-temporal warping for my-

oelectric control: An offline, feasibility study. Journal of Neural Engineering,

18(6), 066028.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasu-

vunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C.,

BIBLIOGRAPHY 44

Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S.,

Jain, R., Adler, J., . . . Hassabis, D. (2021). Highly accurate protein structure

prediction with AlphaFold. Nature, 596(7873), 583–589.

Kahlesz, F., Zachmann, G., & Klein, R. (2004). ’visual-fidelity’ dataglove calibration.

Proceedings Computer Graphics International, 2004., 403–410.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S.,

Radford, A., Wu, J., & Amodei, D. (2020, January 22). Scaling laws for neural

language models.

Khushaba, R. N., Al-Timemy, A., Kodagoda, S., & Nazarpour, K. (2016). Combined

influence of forearm orientation and muscular contraction on EMG pattern

recognition. Expert Systems with Applications, 61, 154–161.

Kim, Y., Denton, C., Hoang, L., & Rush, A. M. (2022). Structured attention networks.

Kitaev, N., Kaiser, L., & Levskaya, A. (2020). Reformer: The efficient transformer. 8th

international conference on learning representations, ICLR 2020, addis ababa,

ethiopia, april 26-30, 2020.

Kolen, J. F., & Kremer, S. C. (2001). Gradient flow in recurrent nets: The difficulty

of learning LongTerm dependencies. In A field guide to dynamical recurrent

networks (pp. 237–243).

Komi, P. V., & Tesch, P. (1979). EMG frequency spectrum, muscle structure, and fa-

tigue during dynamic contractions in man. European Journal of Applied Phys-

iology and Occupational Physiology, 42(1), 41–50.

Konrad, P. (2005). The abc of emg. A practical introduction to kinesiological elec-

tromyography, 1(2005), 30–5.

Krasoulis, A., & Nazarpour, K. (2020). Myoelectric digit action decoding with multi-

output, multi-class classification: An offline analysis. Scientific Reports, 10(1),

16872.

Krasoulis, A., & Nazarpour, K. (2022). Discrete action control for prosthetic digits.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30,

610–620.

Krasoulis, A., Vijayakumar, S., & Nazarpour, K. (2015). Evaluation of regression

methods for the continuous decoding of finger movement from surface EMG

and accelerometry. 2015 7th International IEEE/EMBS Conference on Neural

Engineering (NER), 631–634.

BIBLIOGRAPHY 45

Krasoulis, A., Vijayakumar, S., & Nazarpour, K. (2019). Effect of user practice on

prosthetic finger control with an intuitive myoelectric decoder. Frontiers in

Neuroscience, 13.

Krogh, A., & Hertz, J. (1991). A simple weight decay can improve generalization. In

J. Moody, S. Hanson, & R. Lippmann (Eds.), Advances in neural information

processing systems. Morgan-Kaufmann.

Kyranou, I., Vijayakumar, S., & Erden, M. S. (2018). Causes of performance degrada-

tion in non-invasive electromyographic pattern recognition in upper limb pros-

theses. Frontiers in Neurorobotics, 12.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–

444.

Liaw, R., Liang, E., Nishihara, R., Moritz, P., Gonzalez, J. E., & Stoica, I. (2018, July

13). Tune: A research platform for distributed model selection and training.

Lin, T., Wang, Y., Liu, X., & Qiu, X. (2022). A survey of transformers. AI Open, 3,

111–132.

McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in

nervous activity. The bulletin of mathematical biophysics, 5(4), 115–133.

Montazerin, M., Rahimian, E., Naderkhani, F., Atashzar, S. F., Yanushkevich, S., &

Mohammadi, A. (2023). Transformer-based hand gesture recognition from in-

stantaneous to fused neural decomposition of high-density EMG signals. Sci-

entific Reports, 13(1), 11000.

Ngeo, J. G., Tamei, T., & Shibata, T. (2014). Continuous and simultaneous estimation

of finger kinematics using inputs from an EMG-to-muscle activation model.

Journal of NeuroEngineering and Rehabilitation, 11(1), 122.

Nguyen, A. T., Drealan, M. W., Khue Luu, D., Jiang, M., Xu, J., Cheng, J., Zhao, Q.,

Keefer, E. W., & Yang, Z. (2021). A portable, self-contained neuroprosthetic

hand with deep learning-based finger control. Journal of Neural Engineering,

18(5).

Ortiz-Catalan, M., Håkansson, B., & Brånemark, R. (2014). Real-time and simultane-

ous control of artificial limbs based on pattern recognition algorithms. IEEE

transactions on neural systems and rehabilitation engineering: a publication

of the IEEE Engineering in Medicine and Biology Society, 22(4), 756–764.

Ortiz-Catalan, M., Rouhani, F., Branemark, R., & Hakansson, B. (2015). Offline ac-

curacy: A potentially misleading metric in myoelectric pattern recognition for

prosthetic control. Annual International Conference of the IEEE Engineering

BIBLIOGRAPHY 46

in Medicine and Biology Society. IEEE Engineering in Medicine and Biology

Society. Annual International Conference, 2015, 1140–1143.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,

Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z.,

Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., . . . Chintala,

S. (2019). PyTorch: An imperative style, high-performance deep learning li-

brary. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, &

R. Garnett (Eds.), Advances in neural information processing systems. Curran

Associates, Inc.

Piazza, C., Grioli, G., Catalano, M., & Bicchi, A. (2019). A century of robotic hands.

Annual Review of Control, Robotics, and Autonomous Systems, 2(1), 1–32.

Rahimian, E., Zabihi, S., Asif, A., Farina, D., Atashzar, S. F., & Mohammadi, A.

(2021, September 25). TEMGNet: Deep transformer-based decoding of upper-

limb sEMG for hand gestures recognition.

Rahimian, E., Zabihi, S., Atashzar, S. F., Asif, A., & Mohammadi, A. (2020). Xcep-

tionTime: Independent time-window xceptiontime architecture for hand ges-

ture classification. ICASSP 2020 - 2020 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 1304–1308.

Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2011). Classifier chains for multi-

label classification. Machine Learning, 85(3), 333–359.

Roche, A. D., Lakey, B., Mendez, I., Vujaklija, I., Farina, D., & Aszmann, O. C.

(2019). Clinical perspectives in upper limb prostheses: An update. Current

Surgery Reports, 7(3), 5.

Ross, A., & Willson, V. L. (2017). Paired samples t-test. In A. Ross & V. L. Will-

son (Eds.), Basic and advanced statistical tests: Writing results sections and

creating tables and figures (pp. 17–19). SensePublishers.

Saby, J. N., & Marshall, P. J. (2012). The utility of EEG band power analysis in the

study of infancy and early childhood. Developmental Neuropsychology, 37(3),

253–273.

Salminger, S., Stino, H., Pichler, L. H., Gstoettner, C., Sturma, A., Mayer, J. A., Szivak,

M., & Aszmann, O. C. (2022). Current rates of prosthetic usage in upper-limb

amputees - have innovations had an impact on device acceptance? Disability

and Rehabilitation, 44(14), 3708–3713.

Samuel, O. W., Grace Asogbon, M., Geng, Y., Li, X., Pirbhulal, S., Chen, S., Ganesh,

N., Feng, P., & Li, G. (2019). Spatio-temporal based descriptor for limb movement-

BIBLIOGRAPHY 47

intent characterization in EMG-pattern recognition system. 2019 41st Annual

International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC), 2637–2640.

Simão, M., Mendes, N., Gibaru, O., & Neto, P. (2019). A review on electromyography

decoding and pattern recognition for human-machine interaction. IEEE Access,

7, 39564–39582.

Sinha, R., van den Heuvel, W. J., & Arokiasamy, P. (2011). Factors affecting quality

of life in lower limb amputees. Prosthetics and Orthotics International, 35(1),

90.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15(56), 1929–1958.

Tkach, D., Huang, H., & Kuiken, T. A. (2010). Study of stability of time-domain fea-

tures for electromyographic pattern recognition. Journal of NeuroEngineering

and Rehabilitation, 7(1), 21.

Tsipouras, M. G. (2019). Spectral information of EEG signals with respect to epilepsy

classification. EURASIP Journal on Advances in Signal Processing, 2019(1),

10.

Tuli, S., Casale, G., & Jennings, N. R. (2022). TranAD: Deep transformer networks for

anomaly detection in multivariate time series data. Proc. VLDB Endow., 15(6),

1201–1214.

TU-T. (1988). Pulse code modulation (PCM) of voice frequencies.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,

& Polosukhin, I. (2017). Attention is all you need. In I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, & R. Garnett (Eds.), Ad-

vances in neural information processing systems. Curran Associates, Inc.

Veit, A., Wilber, M., & Belongie, S. (2016). Residual networks behave like ensembles

of relatively shallow networks. Proceedings of the 30th International Confer-

ence on Neural Information Processing Systems, 550–558.

Viitasalo, J. H., & Komi, P. V. (1977). Signal characteristics of EMG during fatigue.

European Journal of Applied Physiology and Occupational Physiology, 37(2),

111–121.

Vujaklija, I., Farina, D., & Aszmann, O. C. (2016). New developments in prosthetic

arm systems. Orthopedic Research and Reviews, 8, 31–39.

Vujaklija, I., Roche, A. D., Hasenoehrl, T., Sturma, A., Amsuess, S., Farina, D., &

Aszmann, O. C. (2017). Translating research on myoelectric control into clin-

ics—are the performance assessment methods adequate? Frontiers in Neuro-

robotics, 11.

Wang, S., Li, B. Z., Khabsa, M., Fang, H., & Ma, H. (2020, June 14). Linformer:

Self-attention with linear complexity.

Wang, Y., Zhao, P., & Zhang, Z. (2023). A deep learning approach using attention

mechanism and transfer learning for electromyographic hand gesture estima-

tion. Expert Systems with Applications, 234, 121055.

Wen, Q., Zhou, T., Zhang, C., Chen, W., Ma, Z., Yan, J., & Sun, L. (2022). Transform-

ers in time series: A survey. CoRR, abs/2202.07125.

Wu, H., Dyson, M., & Nazarpour, K. (2021). Arduino-based myoelectric control: To-

wards longitudinal study of prosthesis use. Sensors, 21(3), 763.

Wu, Y., Zheng, B., & Zhao, Y. (2018). Dynamic gesture recognition based on LSTM-

CNN. 2018 Chinese Automation Congress (CAC), 2446–2450.

Wurth, S. M., & Hargrove, L. J. (2014). A real-time comparison between direct con-

trol, sequential pattern recognition control and simultaneous pattern recogni-

tion control using a fitts’ law style assessment procedure. Journal of Neuro-

Engineering and Rehabilitation, 11(1), 91.

Xia, P., Hu, J., & Peng, Y. (2018). EMG-based estimation of limb movement using

deep learning with recurrent convolutional neural networks. Artificial Organs,

42(5), E67–E77.

Xiong, D., Zhang, D., Zhao, X., & Zhao, Y. (2021). Deep learning for EMG-based

human-machine interaction: A review. IEEE/CAA Journal of Automatica Sinica,

8(3), 512–533.

Zabihi, S., Rahimian, E., Asif, A., & Mohammadi, A. (2022, March 30). TraHGR:

Transformer for hand gesture recognition via ElectroMyography.

Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A., & Eickhoff, C. (2021). A

transformer-based framework for multivariate time series representation learn-

ing. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discov-

ery & Data Mining, 2114–2124.

Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., & Jin, R. (2022). FEDformer: Frequency

enhanced decomposed transformer for long-term series forecasting. Proceed-

ings of the 39th International Conference on Machine Learning, 27268–27286.

Appendix A

Transformers

Transformers are deep ML sequence-to-sequence models that implement the attention

mechanism. In the following few sections, the components that make up the trans-

former are individually explained and, in a final section, combined into a present-day

transformer architecture.

A.1 Positional Encoding

In RNNs, the position of an input in a sequence is captured in the way that sequence is

fed to the model, i.e., input by input. In contrast, transformers are designed to process

complete sequences in parallel. This is beneficial from a computational point of view,

but it requires that positional information is explicitly encoded in the input. There are

two approaches to so-called positional encodings. Either a specific scheme is used

to generate a fixed vector that encodes positional information for each position in the

sequence, or such vectors are learnt as model weights (Gehring et al., 2017).

The original transformer implements fixed positional encodings generated through

sine and cosine functions of different frequencies (Vaswani et al., 2017). For every

position p in an input sequence of inputs of dimension n, a positional encoding PE is

generated using:

PEp,2i = sin
(

p

10000
2i
d

)
(A.1)

PEp,2i+1 = cos
(

p

10000
2i
d

)
(A.2)

where i indicates the dimension of the encoding. Thus, each dimension of the encoding

is a sinusoid and for any offset k, PEp+k can be represented as a linear function of PEp.

A-1

Appendix A. Transformers A-2

An input vector is enriched with positional information by adding its PE vector to

it. Many other possible positional encoding generation schemes exist (Gehring et al.,

2017). Vaswani et al. (2017) reason that these kinds of encodings should allow models

to learn to relate positions to each other.

While fixed positional encodings are effective, it is usually possible to achieve

similar performance using learnt positional encodings. In this case, an L× d matrix

of model weights is learnt with the model, where L denotes the maximum allowed

sequence length. Each row of said matrix corresponds to a PE vector.

A.2 Attention

The attention mechanism was designed as a technique that would allow a model to

learn the importance of certain features for the task at hand (Kim et al., 2022). In

its most simple form, attention is a function that takes as input a sequence of vectors

xxxi, . . . ,xxxn of dimension d and returns a sequence of vectors yyy1, . . . ,yyyn of the same length

and same dimension:

yyy1, . . . ,yyyn = attention(xxx1, . . . ,xxxn) (A.3)

The vectors yyyi are weighted averages of the the vectors xxxi, where the weights wwwi rep-

resent the ‘attention’ the model is assigning to a specific vector xxxi, i.e., the attention

weights:

yyyi = www⊤
i xxxi, (A.4)

where the weights w(d)
i in wwwi are normalised such that they sum to 1.

The power of the attention mechanism lies in the way it models the attention

weights, which it does using a compatibility measure. Each input vector xxxi is assigned

two vectors, a ‘query’ vector qqqi and a ‘key’ vector kkki, both also of dimension d. The

compatibility score si j between two input vectors xxxi and xxx j is then calculated by taking

the dot product of the query vector of one and the key vector of the other:

si j = qqq⊤iii kkk jjj, (A.5)

such that the ‘score’ vector sssi of input vector xxxi contains its compatibility scores w.r.t.

to all input vectors (including itself):

sssi = [si1, . . . ,sin] (A.6)

Appendix A. Transformers A-3

The attention weights are computed by normalising the score vectors sssi using the soft-

max function:

wwwiii = softmax(sssi), (A.7)

with:

softmax(xxx)i =
ex(i)

d
∑
j=1

ex(j)
(A.8)

The calculation of attention relies thus on the query and key vectors. These are

usually stacked into matrices Q and K, respectively. Depending on the maximum

allowed length L of the input sequence, which is a hyperparameter, these matrices are

of dimension L× d. The values in these matrices, and by further computation thus

also the attention weights, are learned from data using optimisation methods. Most

often, the attention mechanism is followed by a fully-connected feed-forward neural

network, aimed at further processing the output vectors that have been enriched with

the attention information.

A.3 Layer Normalisation & Residual Connections

When training ML models, it is common practice to normalise the input features, i.e.

mapping their values to [0,1], or transforming them such that they follow a distribution

with zero mean and unit variance. Doing so reduces training time, as it will be easier

for the gradient descent algorithm to converge. Furthermore, normalising reduces the

risk of accumulating large gradients, which could lead to an unstable training process.

An extension of normalisation for NNs stems from the observation that the input layer

of a NN is not the only layer that receives input. Every layer of a NN receives as input

the outputs of the previous layer. If those outputs’ scales differ significantly, the same

issues from before can occur. Hence, Ba et al. (2016) devised layer normalisation,

where the inputs ai of every layer l of dimension d are normalised into:

âi =
ai −µl√

σ2
l

(A.9)

Appendix A. Transformers A-4

L1 L2 Ln... +

Figure A.1: Visualisation of a residual connection.

with:

µl =
1
d

d

∑
i=1

ai (A.10)

σ
2
l =

1
d

d

∑
i=1

(ai −µl)
2 (A.11)

This normalisation step is part of the model and is performed every time input flows

through the model.

In the transformer architecture, layer normalisation is usually preceded by a resid-

ual connection. Such a connection allows the data flow to skip certain layers, as de-

picted by Figure A.1. The outputs of the layers that are skipped are summed with the

outputs that did the skip. Veit et al. (2016) explain that the different paths that residual

connections introduce in NNs can be unraveled into ensembles of smaller NNs that do

not strongly depend on each other. Since a big part of the gradients in gradient descent

originate from short paths, residual connections do not resolve the vanishing/exploding

gradients problem, but they avoid it by introducing shallow subnetwork ensembles.

A.4 Architecture

Figure A.2 depicts a present-day transformer-like architecture that implements posi-

tional encodings, the attention mechanism, layer normalisation, and residual connec-

tions. A hyperparameter of the architecture is the depth of the model, which denotes

the number of ‘encoder’ blocks that follow each other in sequence. This type of trans-

former architecture is often called an ‘encoder-transformer’, because it only consists

of encoder blocks (Devlin et al., 2019). The original transformer architecture also

implements ‘decoder’ blocks, which are intended to decode the encoded outputs of

the encoder blocks (Vaswani et al., 2017). Architectures that are seen as ‘decoder-

transformers’ exist as well (Brown et al., 2020). However, whether or not the architec-

Input

Multi-Head
Attention

Feed
Forward

Layer Norm

Layer Norm

+
Positional
Encoding

Linear

Softmax

+

+

E
n
c
o
d
e
r

Figure A.2: Architecture diagram of a traditional transformer-encoder. Figure after

those of Vaswani et al. (2017).

ture is an encoder or a decoder is a matter of what it is trained for, rather than how it

works. When using the encoder or decoder blocks on their own, architecturally, there

is no difference between them.

The transformer architecture comes with some considerations. For example, it is

often the case that the encoder blocks implement multi-head attention, an extension of

the attention mechanism that comes down to modelling multiple attention mechanisms

in parallel. Multi-head attention allows for more than 1 set of attention weights, each

of which can learn to attend to different aspects in the data. Another consideration

is the location of the residual connections and layer normalisation. In the original

transformer, these two are positioned after the attention mechanism and feed-forward

neural network. More recent models often place them before (Brown et al., 2020),

however, there is no real consensus as to which is better. Lastly, depending on the task

the architecture is intended for, the output layers can differ. If the task is a regression

task, the outputs of the last encoder block go through a linear layer that has the required

output dimension. In the case of classification, the linear layer is followed by a softmax

layer to get normalised class probabilities.

Appendix B

Resources

The processing and model training code is available on GitLab1, the README gives

an overview of how to use it. The data can be downloaded from the Ninapro web-

site2, or using the download script from the repository. The repository further contains

seeded configuration files that allow for reproducing all my evaluations. I can provide

the models’ weights and metadata upon request. Lastly, an interactive dashboard that

presents all the models’ training/validation curves and testing results is available on

Weights&Biases3.

1https://git.ecdf.ed.ac.uk/s2408107/EMG-DAD-transformer
2http://ninapro.hevs.ch/DB8_Instructions
3https://api.wandb.ai/links/wulfdewolf/u15bse2e

https://git.ecdf.ed.ac.uk/s2408107/EMG-DAD-transformer
http://ninapro.hevs.ch/DB8_Instructions
https://api.wandb.ai/links/wulfdewolf/u15bse2e

Appendix C

Model Training

Every participant has their own model. Due to the relatively small scale of the models

I opted for a fixed number of epochs, instead of an early-stopping approach. I ran

preliminary experiments to determine a number of epochs sufficiently large for all

configurations to converge and decided on 40 as a good value. I train using mini-batch

gradient descent through PyTorch’s Adam optimiser with the weight decay parameter

for L2-regularisation (Paszke et al., 2019). All training happened deterministically (and

with set seeds for reproducibility), in full precision, and optimised for performance

using PyTorch’s compile method.

Appendix D

Hyperparameter Optimisation

I optimise hyperparameters per participant, considering the follow hyperparameters

and respective possible values:

• Mini-batch size: uniform choice from {32,64,128,256,512}.

• Learning rate: log-uniform choice from [0.0001, 0.1].

• Weight decay: log-uniform choice from [0.0001, 0.1].

• Activation function: uniform choice from {‘relu′, ‘gelu′}.

• Dropout rate: log-uniform choice from [0.0001, 0.1].

• Embedding size: uniform choice from {64,128,256,512}.

• Number of attention heads: uniform choice from {2,4,8,16}.

• Number of encoder blocks: uniform choice from [1,10].

For the FULL configuration, I only optimise the first three hyperparameters, the other

hyperparameter values are taken from the individually optimised submodules.

I run 20 HPO trials per model, where 5 trials are always running concurrently.

Choices for new trials are guided using tree-structured parzen estimators (TPE; Bergstra

et al., 2011).

I use the Ray-Tune framework (Liaw et al., 2018) with the Optuna package’s im-

plementation of TPEs (Akiba et al., 2019). I performed all HPO on the Cambridge

Service for Data Driven Discovery (CSD3) high performance computing cluster.

Appendix E

Positional Encodings

The positional encoding similarity figures on the following page accompany those in

Section 5.2.3.

E-1

Appendix E. Positional Encodings E-2

1 2 3 4

5 6 7 8

1 16

1

16

9 10 11 12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure E.1: Positional encoding similarities for the FNET-MIX configuration for all

participants. Each row in each figure represents the cosine similarity between one

position and all the other positions.

1 2 3 4

5 6 7 8

1 16

1

16

9 10 11 12

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure E.2: Positional encoding similarities for the FNET-MIXL configuration for all

participants. Each row in each figure represents the cosine similarity between one

position and all the other positions.

	Introduction
	Objectives
	Structure

	Background
	Electromyographic Prosthetic Control
	Machine Learning Approaches
	Digit Action Decoding

	Transformers for Biomedical Time Series
	Input Processing
	Domain of Attention

	Methodology
	Data
	Acquisition Protocol
	Processing
	Labels

	Model
	Training
	Hyperparameters
	Evaluation
	Metrics
	Baselines
	Comparison

	Results
	Movement Decoding
	Digit Action Decoding
	Input & Model Variations
	Cross-Acquisition Training Data
	Independent Output Models

	Discussion
	Transformers for Movement decoding
	Transformers for Digit Action Decoding
	Cross-Acquisition Transfer
	Muscle Groups
	Correlated Samples
	Time & Space Complexity

	Conclusion
	Contribution
	Prospects & Future work

	Bibliography
	Transformers
	Positional Encoding
	Attention
	Layer Normalisation & Residual Connections
	Architecture

	Resources
	Model Training
	Hyperparameter Optimisation
	Positional Encodings

